17 research outputs found
COVID-19 in Pregnant Women With Rheumatic Disease: Data From the COVID-19 Global Rheumatology Alliance
OBJECTIVE: To describe coronavirus disease-2019 (COVID-19) and pregnancy outcomes in patients with rheumatic disease who were pregnant at the time of infection. METHODS: Since March 2020 the COVID-19 Global Rheumatology Alliance (GRA) has collected cases of patients with rheumatic disease with COVID-19. We report details of pregnant women at the time of COVID-19 infection, including obstetric details separately ascertained from providers. RESULTS: We report on 39 patients, including 22 with obstetric detail available. The mean and median age was 33 years, range 24-45 years. Rheumatic disease diagnoses included: rheumatoid arthritis (n=9), systemic lupus erythematosus (n=9), psoriatic/other inflammatory arthritides (n=8) and anti-phospholipid antibody syndrome (n=6). Most had a term birth (16/22), with 3 pre-term births, one termination, one miscarriage and one woman yet to deliver at time of report. A quarter (n=10/39) of pregnant women were hospitalised following COVID-19 diagnosis. Two of 39 (5%) required supplemental oxygen (both hospitalised); no patient died. The majority did not receive specific medication treatment for their COVID-19 (n=32/39, 82%), seven patients received some combination of anti-malarials, colchicine, anti-IL-1beta, azithromycin, glucocorticoids, and lopinavir/ritonavir. CONCLUSION: Women with rheumatic diseases who were pregnant at the time of COVID-19 had favourable outcomes. These data have limitations due to the small size and methodology, though they provide cautious optimism for pregnancy outcomes for women with rheumatic disease given the increased risk of poor outcomes that have been reported in other series of pregnant women with COVID-19
Tonotopically Arranged Traveling Waves in the Miniature Hearing Organ of Bushcrickets
Place based frequency discrimination (tonotopy) is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz). The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency) to the proximal (low frequency) part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently
Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease
Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB