4,036 research outputs found
Recommended from our members
On the use of diverse arguments to increase confidence in dependability claims
Recommended from our members
How secure is ERTMS?
This paper reports on the results of a security analysis of the European Railway Traffic Management System (ERTMS) specifications. ERTMS is designed to be fail-safe and the general philosophy of ‘if in doubt, stop the train’ makes it difficult to engineer a train accident. However, it is possible to exploit the fail-safe behaviour of ERTMS and create a situation that causes a train to halt. Thus, denial of service attacks are possible, and could be launched at a time and place of the attacker’s choosing, perhaps designed to cause maximum disruption or passenger discomfort. Causing an accident is more difficult but not impossible
Worst Case Reliability Prediction Based on a Prior Estimate of Residual Defects
In this paper we extend an earlier worst case bound reliability theory to derive a worst case reliability function R(t), which gives the worst case probability of surviving a further time t given an estimate of residual defects in the software N and a prior test time T. The earlier theory and its extension are presented and the paper also considers the case where there is a low probability of any defect existing in the program. For the "fractional defect" case, there can be a high probability of surviving any subsequent time t. The implications of the theory are discussed and compared with alternative reliability models
Recommended from our members
Using a Log-normal Failure Rate Distribution for Worst Case Bound Reliability Prediction
Prior research has suggested that the failure rates of faults follow a log normal distribution. We propose a specific model where distributions close to a log normal arise naturally from the program structure. The log normal distribution presents a problem when used in reliability growth models as it is not mathematically tractable. However we demonstrate that a worst case bound can be estimated that is less pessimistic than our earlier worst case bound theory
A Methodology for Safety Case Development
This paper will outline a safety case methodology that seeks to minimise safety risks and commercial risks by constructing a demonstrable safety case. The safety case ideas presented here were initially developed in an EU-sponsored SHIP project [1] and was then further developed in the UK Nuclear Safety Research Programme (the QUARC Project [2]). Some of these concepts have subsequently been incorporated in safety standards such as MOD Def Stan 00-55, and have also been used to establish specific safety cases for clients. A generalisation of the concepts also appears in Def Stan 00-42 Part 2, in the form of the software reliability case
Recommended from our members
Evaluating the resilience and security of boundaryless, evolving socio-technical Systems of Systems
Recommended from our members
Confidence: Its role in dependability cases for risk assessment
Society is increasingly requiring quantitative assessment of risk and associated dependability cases. Informally, a dependability case comprises some reasoning, based on assumptions and evidence, that supports a dependability claim at a particular level of confidence. In this paper we argue that a quantitative assessment of claim confidence is necessary for proper assessment of risk. We discuss the way in which confidence depends upon uncertainty about the underpinnings of the dependability case (truth of assumptions, correctness of reasoning, strength of evidence), and propose that probability is the appropriate measure of uncertainty. We discuss some of the obstacles to quantitative assessment of confidence (issues of composability of subsystem claims; of the multi-dimensional, multi-attribute nature of dependability claims; of the difficult role played by dependence between different kinds of evidence, assumptions, etc). We show that, even in simple cases, the confidence in a claim arising from a dependability case can be surprisingly low
Recommended from our members
Current capabilities, requirements and a proposed strategy for interdependency analysis in the UK
The UK government recently commissioned a research study to identify the state-of-the-art in Critical Infrastructure modelling and analysis, and the government/industry requirements for such tools and services. This study (Cetifs) concluded with a strategy aiming to bridge the gaps between the capabilities and requirements, which would establish interdependency analysis as a commercially viable service in the near future. This paper presents the findings of this study that was carried out by CSR, City University London, Adelard LLP, a safety/security consultancy and Cranfield University, defense academy of the UK
- …