33 research outputs found
Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives
cardanol based green nanovesicles with antioxidant and cytotoxic activities
ABSTRACTThis manuscript describes the preparation of green nanovesicles by using cardanol as renewable starting material with embedded minor amounts of phthalazines, a class of heterocyclic bioactive compounds. The nanovesicles were prepared by stirring induced self-assembly in aqueous medium without involvement of any organic solvent. Dynamic light scattering studies and transmission electron microscopy revealed the formation of nanostructure with an average diameter in the range of 227–375 nm and a well defined spherical morphology. Potential antioxidant activity of nanovesicles were evaluated for the first time by 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assay and bleomycin-dependent DNA damage. Moreover, their cytotoxic effects were also investigated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay on different tumour cell lines. Unloaded nanovesicles showed moderate antioxidant and antitumoural activity that was further enhanced particularl..
Influence of Cardanol Oil on the Properties of Poly(lactic acid) Films Produced by Melt Extrusion
Sustainable polymers from renewable resources are classified as biobased polymers. Poly(lactic acid) (PLA) is one of the most common biobased polymers applied in the biodegradable plastic industry as a feasible substitute of petrochemical-derived products. Cardanol oil (CA), a renewable resource and relatively low-cost side product of the cashew agro-industry, combined with neat PLA permitted the preparation of plasticized PLA/CA films by means of hot melt extrusion processes. Looking at packaging applications of the functional biobased PLA/CA films, chemical, mechanical, thermal, antioxidant, and barrier properties were studied. Thermal analysis revealed that the PLA glass-transition temperature decreased with the increasing content of CA, indicating that CA worked as a plasticizer for PLA. The presence of CA increased the oxygen transmission through the PLA/CA films; consequently, the permeability values were always appreciably higher for plasticized films. Nevertheless, the CA-plasticized PLA films sho..
Sintesi di biomateriali a base di cellulosa derivatizzata
Dottorato di Ricerca in Metodologie per lo Sviluppo di Molecole di interesse Farmacologico,Ciclo XX, a.a.2007-2008Universiotà della Calabri
State of Art and Perspectives in Catalytic Ozonation for Removal of Organic Pollutants in Water: Influence of Process and Operational Parameters
The number of organic pollutants detected in water and wastewater is continuously increasing thus causing additional concerns about their impact on public and environmental health. Therefore, catalytic processes have gained interest as they can produce radicals able to degrade recalcitrant micropollutants. Specifically, catalytic ozonation has received considerable attention due to its ability to achieve advanced treatment performances at reduced ozone doses. This study surveys and summarizes the application of catalytic ozonation in water and wastewater treatment, paying attention to both homogeneous and heterogeneous catalysts. This review integrates bibliometric analysis using VOS viewer with systematic paper reviews, to obtain detailed summary tables where process and operational parameters relevant to catalytic ozonation are reported. New insights emerging from heterogeneous and homogenous catalytic ozonation applied to water and wastewater treatment for the removal of organic pollutants in water have emerged and are discussed in this paper. Finally, the activities of a variety of heterogeneous catalysts have been assessed using their chemical–physical parameters such as point of zero charge (PZC), pKa, and pH, which can determine the effect of the catalysts (positive or negative) on catalytic ozonation processes
Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives