42 research outputs found

    PKCθ Is Required For Alloreactivity And GVHD But Not For Immune Responses Toward Leukemia And Infection In Mice

    Get PDF

    Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.

    Get PDF
    Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity

    11. Regulatory T-cells and cord blood

    No full text

    Mesenchymal Stem Cells: Healthy At Any Age

    No full text

    Bone marrow transplantation and approaches to avoid graft-versus-host disease (GVHD)

    No full text
    Haematopoietic stem cell transplantation (HSCT) offers promise for the treatment of haematological and immune disorders, solid tumours, and as a tolerance inducing regimen for organ transplantation. Allogeneic HSCTs engraftment requires immunosuppression and the anti-tumour effects are dependent upon the immune effector cells that are contained within or generated from the donor graft. However, significant toxicities currently limit its efficacy. These problems include: (i) graft-versus-host disease (GVHD) in which donor T cells attack the recipient resulting in multi-organ attack and morbidity, (ii) a profound period of immune deficiency following HSCT, and (iii) donor graft rejection. Currently available methods to prevent or treat GVHD with systemic immunosuppression can lead to impaired immune recovery, increased opportunistic infections, and higher relapse rates. This review will provide an overview of GVHD pathophysiology and discuss the roles of various cells, pathways, and factors in the GVHD generation process and in the preservation of graft-versus-tumour effects. Variables that need to be taken into consideration in attempting to extrapolate preclinical results to the clinical paradigm will be highlighted
    corecore