32,415 research outputs found
A basic lock-in amplifier experiment for the undergraduate laboratory
We describe a basic experiment for the undergraduate laboratory that demonstrates aspects of both, the science and the art of precision electronic measurements. The essence of the experiment is to measure the resistance of a small length of brass-wire to high accuracy using a simple voltage divider and a lock-in amplifier. By performing the measurement at different frequencies and different drive currents, one observes various random noise sources and systematic measurement effects
Recommended from our members
Age-related changes to lumbosacral spinal cord motoneurons that modulate bladder and bowel functions in male C57BL/6 mice
Incontinence and sexual dysfunction are often increased in the aged human population. In rats and mice the pattern of micturition and faecal clearance also changes with ageing and is suggestive of bladder and bowel dysfunction
Structure, bonding and morphology of hydrothermally synthesised xonotlite
The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab
We present an undergraduate lab that investigates weak localization in thin
silver films. The films prepared in our lab have thickness, , between 60-200
\AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing
length for electrons, , exceeds the thickness of the film (), and the films are then quasi-2D in nature. In this situation, theory
predicts specific corrections to the Drude conductivity due to coherent
interference between conducting electrons' wavefunctions, a macroscopically
observable effect known as weak localization. This correction can be destroyed
with the application of a magnetic field, and the resulting magnetoresistance
curve provides information about electron transport in the film. This lab is
suitable for Junior or Senior level students in an advanced undergraduate lab
course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by
Am. J. Phys. because of too much content on vacuum systems. New version deals
with the undergraduate experiment on weak localization onl
Influence of temperature dependent inelastic scattering on the superconducting proximity effect
We have measured the differential resistance of mesoscopic gold wires of
different lengths connected to an aluminum superconductor as a function of
temperature and voltage. Our experimental results differ substantially from
theoretical predictions which assume an infinite temperature independent gap in
the superconductor. In addition to taking into account the temperature
dependence of the gap, we must also introduce a temperature dependent inelastic
scattering length in order to fit our data
Learning to Dress {3D} People in Generative Clothing
Three-dimensional human body models are widely used in the analysis of human
pose and motion. Existing models, however, are learned from minimally-clothed
3D scans and thus do not generalize to the complexity of dressed people in
common images and videos. Additionally, current models lack the expressive
power needed to represent the complex non-linear geometry of pose-dependent
clothing shapes. To address this, we learn a generative 3D mesh model of
clothed people from 3D scans with varying pose and clothing. Specifically, we
train a conditional Mesh-VAE-GAN to learn the clothing deformation from the
SMPL body model, making clothing an additional term in SMPL. Our model is
conditioned on both pose and clothing type, giving the ability to draw samples
of clothing to dress different body shapes in a variety of styles and poses. To
preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to
3D meshes. Our model, named CAPE, represents global shape and fine local
structure, effectively extending the SMPL body model to clothing. To our
knowledge, this is the first generative model that directly dresses 3D human
body meshes and generalizes to different poses. The model, code and data are
available for research purposes at https://cape.is.tue.mpg.de.Comment: CVPR-2020 camera ready. Code and data are available at
https://cape.is.tue.mpg.d
Metal Cooling in Simulations of Cosmic Structure Formation
The addition of metals to any gas can significantly alter its evolution by
increasing the rate of radiative cooling. In star-forming environments,
enhanced cooling can potentially lead to fragmentation and the formation of
low-mass stars, where metal-free gas-clouds have been shown not to fragment.
Adding metal cooling to numerical simulations has traditionally required a
choice between speed and accuracy. We introduce a method that uses the
sophisticated chemical network of the photoionization software, Cloudy, to
include radiative cooling from a complete set of metals up to atomic number 30
(Zn) that can be used with large-scale three-dimensional hydrodynamic
simulations. Our method is valid over an extremely large temperature range (10
K < T < 10^8 K), up to hydrogen number densities of 10^12 cm^-3. At this
density, a sphere of 1 Msun has a radius of roughly 40 AU. We implement our
method in the adaptive mesh refinement (AMR) hydrodynamic/N-body code, Enzo.
Using cooling rates generated with this method, we study the physical
conditions that led to the transition from Population III to Population II star
formation. While C, O, Fe, and Si have been previously shown to make the
strongest contribution to the cooling in low-metallicity gas, we find that up
to 40% of the metal cooling comes from fine-structure emission by S, when solar
abundance patterns are present. At metallicities, Z > 10^-4 Zsun, regions of
density and temperature exist where gas is both thermally unstable and has a
cooling time less than its dynamical time. We identify these doubly unstable
regions as the most inducive to fragmentation. At high redshifts, the CMB
inhibits efficient cooling at low temperatures and, thus, reduces the size of
the doubly unstable regions, making fragmentation more difficult.Comment: 19 pages, 12 figures, significant revision, including new figure
The nature of a broad line radio galaxy: Simultaneous RXTE and Chandra HETG observations of 3C 382
We present the results from simultaneous chandra and rxte observations of the
X-ray bright Broad-Line Radio Galaxy (BLRG) 3C 382. The long (120 ks) exposure
with chandra HETG allows a detailed study of the soft X-ray continuum and of
the narrow component of the Fe Kalpha line. The rxte PCA data are used to put
an upper limit on the broad line component and constrain the hard X-ray
continuum. A strong soft excess below 1 keV is observed in the time-averaged
HETG spectrum, which can be parameterized with a steep power law or a thermal
model. The flux variability at low energies indicates that the origin of the
soft excess cannot be entirely ascribed to the circumnuclear diffuse emission,
detected by chandra on scales of 20-30 arcsec (22-33 kpc). A narrow (sigma<90
eV) Fe Kalpha line (with EW< 100 eV) is observed by the chandra HEG. Similar
values for the line parameters are measured by the rxte PCA, suggesting that
the contribution from a broad line component is negligible. The fact that the
exposure is split into two observations taken three days apart allows us to
investigate the spectral and temporal evolution of the source on different
timescales. Significant flux variability associated with spectral changes is
observed on timescales of hours and days. The spectral variability is similar
to that observed in radio-quiet AGN ruling out a jet-dominated origin of the
X-rays.Comment: 19 pages, 10 figures, 3 tables, accepted for publication in Ap
Magnetoresistance of proximity coupled Au wires
We report measurements of the magnetoresistance (MR) of narrow Au wires
coupled to a superconducting Al contact on one end, and a normal Au contact on
the other. The MR at low magnetic field is quadratic in , with a
characteristic field scale determined by phase coherent paths which
encompass not only the wire, but also the two contacts. is essentially
temperature independent at low temperatures, indicating that the area of the
phase coherent paths is not determined by the superconducting coherence length
in the normal metal, which is strongly temperature dependent at low
temperatures. We identify the relevant length scale as a combination of the
electron phase coherence length in the normal metal and the coherence
length in the superconductor
Regge behavior saves string theory from causality violations
Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the D p -brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account
- …