12 research outputs found

    Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids

    Get PDF
    Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design

    Sphingolipid and cholesterol dependence of alphavirus membrane fusion - Lack of correlation with lipid raft formation in target liposomes

    No full text
    Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped viruses that infect their host cells by receptor-mediated endocytosis and subsequent fusion from within acidic endosomes. Fusion of the viral envelope requires the presence of both cholesterol and sphingolipids in the target membrane. This is suggestive of a possible involvement of sphingolipid-cholesterol microdomains, or "lipid rafts," in the membrane fusion and cell entry process of the virus. In this study, large unilamellar vesicles (LUVs) were prepared from synthetic sphingolipids and sterols that vary with respect to their capacity to promote microdomain formation, as assessed by gradient flotation analysis in the presence of Triton X-100. SFV and SIN fused with LUVs irrespective of the presence or absence of Triton X-100-insoluble microdomains. These results suggest that SFV and SIN do not require the presence of lipid rafts for fusion with target membranes. Furthermore, it is not necessary for sphingolipids to reside in a detergent-insoluble complex with cholesterol to promote SFV or SIN fusion

    Induction of cytotoxic T lymphocyte activity by immunization with recombinant Semliki Forest virus: indications for cross-priming

    No full text
    For the rational design of vaccines capable of inducing CD8+ T cell responses knowledge of the identity of the antigen-presenting cell (APC) and the mechanism of antigen presentation is very important. Here, we address these issues for alphavirus-based immunization, in particular immunization with recombinant Semliki Forest virus (rSFV). Studies with dendritic cells (DCs) from various origins revealed that rSFV has a very limited capacity to transfect this cell type in vitro. To further investigate in vivo whether rSFV transfects professional antigen-presenting cells directly or whether the antigens reach APCs via a mechanism of cross-priming we compared the immunological effects of three different SFV-constructs encoding the influenza nucleoprotein (NP). These constructs differ in the amount of NP produced per cell or in the stability of the NP, respectively. Induction of cytotoxic T lymphocytes (CTLs) appeared to benefit from a large amount of stable antigen. In contrast, rapid antigen degradation, and thus availability of antigenic peptides in the transfected cell, was found to be disadvantageous. Based on these in vitro and in vivo results, we hypothesize that antigen presentation after SFV-based immunization proceeds via a mechanism in which APCs are not transfected directly but acquire antigen from other transfected cells and present it to CTLs in a process of cross-priming. (C) 2003 Elsevier Ltd. All rights reserved
    corecore