40 research outputs found

    Assessing the impact of prescribed medicines on health outcomes

    Get PDF
    This paper reviews methods that can be used to assess the impact of medicine use on population health outcomes. In the absence of a gold standard, we argue that a convergence of evidence from different types of studies using multiple methods of independent imperfection provides the best bases for attributing improvements in health outcomes to the use of medicines. The major requirements are: good evidence that a safe and effective medicine is being appropriately prescribed; covariation between medicine use and improved health outcomes; and being able to discount alternative explanations of the covariation (via covariate adjustment, propensity analyses and sensitivity analyses), so that medicine use is the most plausible explanation of the improved health outcomes. The strongest possible evidence would be provided by the coherence of the following types of evidence: (1) individual linked data showing that patients are prescribed the medicine, there are reasonable levels of patient compliance, and there is a relationship between medicine use and health improvements that is not explained by other factors; (2) ecological evidence of improvements in these health outcomes in the population in which the medicine is used. Confidence in these inferences would be increased by: the replication of these results in comparable countries and consistent trends in population vital statistics in countries that have introduced the medicine; and epidemiological modelling indicating that changes observed in population health outcomes are plausible given the epidemiology of the condition being treated

    Markers of Dysglycaemia and Risk of Coronary Heart Disease in People without Diabetes: Reykjavik Prospective Study and Systematic Review

    Get PDF
    BACKGROUND: Associations between circulating markers of dysglycaemia and coronary heart disease (CHD) risk in people without diabetes have not been reliably characterised. We report new data from a prospective study and a systematic review to help quantify these associations. METHODS AND FINDINGS: Fasting and post-load glucose levels were measured in 18,569 participants in the population-based Reykjavik study, yielding 4,664 incident CHD outcomes during 23.5 y of mean follow-up. In people with no known history of diabetes at the baseline survey, the hazard ratio (HR) for CHD, adjusted for several conventional risk factors, was 2.37 (95% CI 1.79-3.14) in individuals with fasting glucose > or = 7.0 mmol/l compared to those or = 7 mmol/l at baseline were excluded, relative risks for CHD, adjusted for several conventional risk factors, were: 1.06 (1.00-1.12) per 1 mmol/l higher fasting glucose (23 cohorts, 10,808 cases, 255,171 participants); 1.05 (1.03-1.07) per 1 mmol/l higher post-load glucose (15 cohorts, 12,652 cases, 102,382 participants); and 1.20 (1.10-1.31) per 1% higher HbA(1c) (9 cohorts, 1639 cases, 49,099 participants). CONCLUSIONS: In the Reykjavik Study and a meta-analysis of other Western prospective studies, fasting and post-load glucose levels were modestly associated with CHD risk in people without diabetes. The meta-analysis suggested a somewhat stronger association between HbA(1c) levels and CHD risk

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Endophytic Fungi as Novel Resources of natural Therapeutics

    Full text link

    Plasmacholinesterasehemmung

    No full text
    corecore