34 research outputs found

    An Einstein model of brittle crack propagation

    No full text

    Fundamental Scientific Issues for Nanotechnology

    No full text

    Atomistic simulations of shock-induced phase transformations in polycrystalline iron

    No full text
    We report on large-scale non-equilibrium atomistic simulations of shock-induced transformations in poly crystalline iron samples. These simulations show that, depending on the crystallographic orientation of the body-centered-cubic (bcc) parent phase grains with respect to the shock direction, a significant fraction of the product phase can be face-centered-cubic (fcc) instead of the expected hexagonal-close-packed (hcp) structure. This observation is explained by the existence of different transformation mechanisms for shocks along different crystallographic directions. We conclude that the observation of different product phases can be explained by simple geometric considerations of the involved transformation mechanisms between the parent bcc structure and the product hcp and fcc structures. Ultrafast high-energy laser-based experiments are underway to further investigate this subject. © 2007 American Institute of Physics

    Shock waves in polycrystalline iron

    No full text
    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone

    Predicting EXAFS signals from shock compressed iron by use of molecular dynamics simulations

    No full text
    Simulated EXAFS signals from ab initio models and configurational averaging of molecular dynamics (MD) data are compared for α-Fe, and configurationally averaged MD EXAFS signals are compared with experimental data for iron shock compressed to pressures above the α-ε{lunate} transition pressure. It is shown that molecular dynamics potentials and ab initio models capable of recreating similar vibrational density of states lead to EXAFS signals in good mutual agreement. The effects of the classical nature of the phonon distribution in the MD and the anharmonicity of the potential give rise to noticeable differences between ab initio models and configurational averaging of MD data. However, the greatest influence on the spectra is the form of the potential itself. We discuss the importance of these effects in simulating EXAFS spectra for shock compressed polycrystalline iron. It is shown that EXAFS is an insensitive probe for determining the nature of the close packed product phase in this system. © 2009 Elsevier B.V

    Simulating EXAFS patterns of shocked crystals

    No full text
    Extended X-ray absorption fine structure (EXAFS) measurements on shocked polycrystalline iron have provided further evidence for the shock induced alpha - epsilon phase transition in iron. However, recent molecular dynamics investigation of this system has suggested the presence of fcc material in the shocked region. In this paper we will investigate the difficulties in simulating EXAFS signals from molecular dynamics data. We will aim to show that in the case of the shock induced a - E transition EXAFS is insensitive to the type of close packing of the product phase

    Predicting EXAFS signals from shock compressed iron by use of molecular dynamics simulations

    No full text
    Simulated EXAFS signals from ab initio models and configurational averaging of molecular dynamics (MD) data are compared for α-Fe, and configurationally averaged MD EXAFS signals are compared with experimental data for iron shock compressed to pressures above the α-ε{lunate} transition pressure. It is shown that molecular dynamics potentials and ab initio models capable of recreating similar vibrational density of states lead to EXAFS signals in good mutual agreement. The effects of the classical nature of the phonon distribution in the MD and the anharmonicity of the potential give rise to noticeable differences between ab initio models and configurational averaging of MD data. However, the greatest influence on the spectra is the form of the potential itself. We discuss the importance of these effects in simulating EXAFS spectra for shock compressed polycrystalline iron. It is shown that EXAFS is an insensitive probe for determining the nature of the close packed product phase in this system. © 2009 Elsevier B.V

    Asymmetric dimethylarginine potentiates lung inflammation in a mouse model of allergic asthma

    No full text
    Nitric oxide (NO), formed by nitric oxide synthase (NOS), is an important mediator of lung inflammation in allergic asthma. Asymmetric dimethylarginine (ADMA), a competitive endogenous inhibitor of NOS, is metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). Elevated ADMA has been shown to affect lung function in mice, and by inhibiting NOS it alters NO and reactive oxygen species production in mouse lung epithelial cells. However, the effects of altered ADMA levels during lung inflammation have not been explored. A model of allergen-induced airway inflammation was utilized in combination with the modulation of endogenous circulating ADMA levels in mice. Airway inflammation was assessed by quantifying inflammatory cell infiltrates in lung lavage and by histology. Lung DDAH expression was assessed by quantitative PCR and immunohistochemistry. Nitrite levels were determined in lung lavage fluid as a measure of NO production. iNOS expression was determined by immunohistochemistry, immunofluorescence, Western blot, and quantitative PCR. NF-κB binding activity was assessed by a transcription factor binding assay. Allergen-induced lung inflammation was potentiated in mice with elevated circulating ADMA and was reduced in mice overexpressing DDAH. Elevated ADMA reduced nitrite levels in lung lavage fluid in both allergen-challenged and control animals. ADMA increased iNOS expression in airway epithelial cells in vivo following allergen challenge and in vitro in stimulated mouse lung epithelial cells. ADMA also increased NF-κB binding activity in airway epithelial cells in vitro. These data support that ADMA may play a role in inflammatory airway diseases such as asthma through modulation of iNOS expression in lung epithelial cells
    corecore