6 research outputs found
Mitoxantrone pleurodesis to palliate malignant pleural effusion secondary to ovarian cancer
BACKGROUND: Advanced ovarian cancer is the leading non-breast gynaecologic cause of malignant pleural effusion. Aim of this study was to assess the efficacy of mitoxantrone sclerotherapy as a palliative treatment of malignant pleural effusions due to ovarian cancer. METHODS: Sixty women with known ovarian cancer and malignant recurrent symptomatic pleural effusion were treated with chest tube drainage followed by intrapleural mitoxantrone sclerotherapy. Survival, complications and response to pleurodesis were recorded. The data are expressed as the mean ± SEM and the median. RESULTS: The mean age of the entire group was 64 ± 11,24 years. The mean interval between diagnosis of ovarian cancer and presentation of the effusion was 10 ± 2,1 months. Eighteen patients (30%) had pleural effusion as the first evidence of recurrence. The mean volume of effusion drained was 1050 ± 105 ml and chest tube was removed within 4 days in 75% of patients. There were no deaths related to the procedure. Side effects of chemical pleurodesis included fever (37–38,5°C) chest pain, nausea and vomiting. At 30 days among 60 treated effusions, there was an 88% overall response rate, including 41 complete responses and 12 partial responses. At 60 days the overall response was 80% (38 complete responses and 10 partial responses). The mean survival of the entire population was 7,5 ± 1,2 months. CONCLUSIONS: Mitoxantrone is effective in the treatment of malignant pleural effusion secondary to ovarian cancer without causing significant local or systemic toxicity
Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors