58 research outputs found

    Benefits of knowledge-based interprofessional communication skills training in medical undergraduate education

    Get PDF
    OBJECTIVES: Good interprofessional communication is fundamental to effective teamworking in medicine. Finalmed is a private course that teaches the principles and methods of clinical presenting as an iterative technique of reasoning though clinical data. We have tested the efficacy of this technique using a questionnaire-based study. DESIGN: An anonymized 10-point Likert scale questionnaire was designed. SETTING: Questionnaires were distributed at five UK courses and two UAE courses. PARTICIPANTS: Questionnaires were given to all students attending these courses. MAIN OUTCOME MEASURES: The questionnaire included pre- and post-course questions addressing self-reported confidence in clinical presenting (CCP) and effectiveness in clinical presenting (ECP). We also asked whether attendees felt that clinical presenting should be integrated formally into medical school curricula. RESULTS: A total of 331/395 questionnaires were returned. Median improvement in CCP was 50% (P < 0.0001) and in ECP was 40% (P < 0.0001), irrespective of country of study, graduate entry status and whether the student felt that they had been exposed to these techniques previously. Students recorded a strong opinion in favour of integrating the content and style of the Finalmed course into their medical school curriculum, with 286 students (86%) recording a score of ≥8. CONCLUSION: Our study suggests that after a two- or three-day dedicated course, both self-reported confidence and effectiveness in clinical presenting significantly improve. Furthermore, students in the UK and the UAE returned a desire for integration into medical school curricula of IPC through the teaching of clinical presenting

    Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum

    Get PDF
    Novel polyethersulfone (PES) membranes blended with 0.1–3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes

    Sterility and Gene Expression in Hybrid Males of Xenopus laevis and X. muelleri

    Get PDF
    BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level

    Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    No full text
    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it is important to compare the measured shear strength to penetrometer measurements and to develop a correlation (or correlations) between UCS measured by a pocket penetrometer and direct shear strength measurements for various homogeneous and heterogeneous simulants. This study developed 11 homogeneous simulants, whose shear strengths vary from 4 to 170 kPa. With these simulants, we developed correlations between UCS measured by a Geotest E-280 pocket penetrometer and shear strength values measured by a Geonor H-60 hand-held vane tester and a more sophisticated bench-top unit, the Haake M5 rheometer. This was achieved with side-by-side measurements of the shear strength and UCS of the homogeneous simulants. The homogeneous simulants developed under this study consist of kaolin clay, plaster of Paris, and amorphous alumina CP-5 with water. The simulants also include modeling clay. The shear strength of most of these simulants is sensitive to various factors, including the simulant size, the intensity of mixing, and the curing time, even with given concentrations of simulant components. Table S.1 summarizes these 11 simulants and their shear strengths

    A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution

    Get PDF
    A numerical catchment-scale model capable of simulating diffuse water pollution is necessary in sustainable environmental management for better implementation of the EU Water Framework Directive. This paper provides critical reviews of most popular and free models for diffuse water modelling, with detailed sources and application potential. Based upon these reviews, further work of selecting and testing the HSPF model was carried out, with a case study in the Upper Bann Catchment, Northern Ireland. The calibrated and validated HSPF model can well represent the characteristics of surface water quantity and quality. Climate change scenario evaluation in 5 years showed that when the annual mean temperature increase 3◦C the mean yearly total runoff volume will decrease by 11.1% and the mean daily river flow 11.4%. If 20% crop and pasture land is converted into forest land in the study area, the mean river concentration of nitrate, nitrite, NH4 and PO4 in 5 years will decrease by 19.4%, 33.3%, 31.3% and 31.3% respectively. When applying filter strip method in 80% crop and pasture land in the area, the reduction of the mean concentration of nitrate, nitrite, NH4 and PO4 in 5 years will be 15.3%, 33.3%, 31.3%, and 5.6% respectively. This study shows that HSPF is a suitable model in handling diffuse source water pollution, which can be introduced into the Programme of Measures in the River Basin Management Plans for better implementation of the EUWFD
    corecore