8 research outputs found

    Stepwise Optimization of the Procedure for Assessment of Circulating Progenitor Cells in Patients with Myocardial Infarction

    Get PDF
    The number and functional activity of circulating progenitor cells (CPCs) is altered in diabetic patients. Furthermore, reduced CPC count has been shown to independently predict cardiovascular events. Validation of CPCs as a biomarker for cardiovascular risk stratification requires rigorous methodology. Before a standard operation protocol (SOP) can be designed for such a trial, a variety of technical issues have to be addressed fundamentally, which include the appropriate type of red blood cell lysis buffer, FMO or isotype controls to identify rare cell populations from background noise, optimal antibody dilutions and conditions of sample storage. We herein propose improvements in critical steps of CPC isolation, antigenic characterization and determination of functional competence for final application in a prospective investigation of CPCs as a biomarker of outcome following acute myocardial infarction.In this validation study, we refined the standard operating procedure (SOP) for flow cytometry characterisation and functional analysis of CPCs from the first 18 patients of the Progenitor Cell Response after Myocardial Infarction Study (ProMIS). ProMIS aims to verify the prognostic value of CPCs in patients with either ST elevation or non-ST elevation myocardial infarction with or without diabetes mellitus, using cardiac magnetic resonance imaging (MRI) for assessment of ventricular function as a primary endpoint. Results indicate crucial steps for SOP implementation, namely timely cell isolation after sampling, use of appropriate lysis buffer to separate blood cell types and minimize the acquisition events during flow cytometry, adoption of proper fluorophore combination and antibody titration for multiple antigenic detection and introduction of counting beads for precise quantification of functional CPC activity in migration assay.With systematic specification of factors influencing the enumeration of CPC by flow cytometry, the abundance and migration capacity of CPCs can be correctly assessed. Adoption of validated SOP is essential for refined comparison of patients with different comorbidities in the analysis of risk stratification

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    The unfolded protein response in immunity and inflammation

    Full text link
    corecore