8,623 research outputs found
Development of a thermal sensor to probe cell viability and concentration in cell suspensions
This paper presents a novel biothermal sensor to probe cell viability and concentration of a cell suspension. The sensing technique exploits the thermophysical properties of the suspension, so no labeling of suspended cells is required. When the sensor is periodically heated, the amplitude and phase of the thermal signal are dependent on the thermal properties of the cell suspension, particularly the thermal conductivity k. We measured k of HeLa, hepatocyte, and NIH-3T3 J2 cell suspensions with various concentrations and viabilities. The results demonstrate that the k of a cell suspension has a strong correlation with its concentration and viability. Accordingly, k can be employed as an index of cell concentration and viability. Furthermore, without data processing to obtain k, the electric signal that reflects the thermal response of the sensor can be used as a tool to probe viability of a cell suspension in real time. The proposed thermal sensing technique offers label-free, non-invasive, long-term, and real-time means to probe the viability and concentration of cells in a suspension. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.X1134sciescopu
Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension
This is the accepted manuscript of a paper published in the Journal of Neurosurgery, Published online February 6, 2015; DOI: 10.3171/2014.12.JNS14516.OBJECT Brain deformation can be seen in hydrocephalus and idiopathic intracranial hypertension (IIH) via medical images. The phenomenology of local effects, brain shift, and raised intracranial pressure and herniation are textbook concepts. However, there are still uncertainties regarding the specific processes that occur when brain tissue is subject to the mechanical stress of different temporal and spatial profiles of the 2 neurological disorders. Moreover, recent studies suggest that IIH and hydrocephalus may be diseases with opposite pathogenesis. Nevertheless, the similarities and differences between the 2 subjects have not been thoroughly investigated. METHODS An anatomical porohyperelastic finite element model was used to assess the brain tissue responses associated with hydrocephalus and IIH. The same set of boundary conditions, with the exception of brain loading for development of the transmantle pressure gradient, was applied for the 2 models. The distribution of stress and strain during tissue distortion is described by the mechanical parameters. RESULTS The results of both the hydrocephalus and IIH models correlated with pathological characteristics. For the hydrocephalus model, periventricular edema was associated with the presence of positive volumetric strain and void ratio in the lateral ventricle horns. By contrast, the IIH model revealed edema across the cerebral mantle, including the centrum semiovale, with a positive void ratio and volumetric strain. CONCLUSIONS The model simulates all the clinical features in correlation with the MR images obtained in patients with hydrocephalus and IIH, thus providing support for the role of the transmantle pressure gradient and capillary CSF absorption in CSF-related brain deformation. The finite element methods can be used for a better understanding of the pathophysiological mechanisms of neurological disorders associated with parenchymal volumetric fluctuation.Dr. M. Czosnyka is a consultant for J&J (Codman), and has received payment for lectures from Integra Lifescience. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRFK) funded by the Ministry of Science, ICT, & Future Planning (2013R1A1A1004827); and the International Research & Development Program of the NRFK funded by the Ministry of Education, Science, and Technology of Korea (Grant No. 2014K1A3A1A21001366)
Semimetallization of dielectrics in strong optical fields
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (similar to 1 V/angstrom) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.open11178sciescopu
Screening and optimization of extracellular lipases by Acinetobacter species isolated from oil-contaminated soil in South Korea
A total of 53 strains of bacteria were isolated from oil contaminated soil collected in South Korea. The isolated bacteria were screened using spirit blue agar and Rhodamine-B agar media. Two of the isolated strains exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, these two strains (BK43 and BK44) were selected and identified based on their morphological and physiological characteristics. The 16S rRNA gene sequencing was also implemented. Phylogenetic analyses based on the results of 16S rRNA gene sequencing revealed that BK43 and BK44 were close in identity to Acinetobacter junii. The optimum pH and temperature for lipase production by BK43 were found to be 6.0 at 30°C, after 24 h of incubation, while BK44 were found to be 6.0 at 25°C, after 12 h of incubation. In addition, increased enzymatic production was obtained when the organisms were cultured in medium supplemented with 1% sucrose as the carbon source. Among the different lipase inducers tested, both strains utilized Tween 80 and produced a great level of extracellular lipase. Overall, the results of the present study demonstrate that the genus Acinetobacter is good for extracellular lipase production under acidic conditions.Key words: Acinetobacter, lipase, optimization, screening
Recommended from our members
OA06-02. Monospecific Expansion of SIVmac251 During Acute Infection Masks Multiple Transmitted Virus Variants Revealed During the Chronic Phase
Sorghum cobalt analysis on not determined wave length with atomic absorption spectrophotometer on background correction mode
This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 nm, respectively. The larger absorbance value on the 240.7 nm, apparently, it might be considered as a good wave length but the smaller background value was a more important factor for the analysis as was shown on 240.6 nm. Correlation coefficients between the values on 240.7 nm: 240.6 nm and between them (240.8 nm: 240.6 nm) were higher and this common 240.6 nm was considered the better wave length.Key words: Atomic absorption spectrophotometer; background correction mode, cobalt analysis, forage sorghum, not determined wave lengths
Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites
Graphene reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), thermogravimetrical analysis (TGA) and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy (TEM). It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89% by incorporating 1 and 5 wt.% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behaviour due to the not proper exfoliation except the ash content
- …