123 research outputs found
2, 4-Diamino-6- hydroxy pyrimidine inhibits NSAIDs induced nitrosyl-complex EPR signals and ulcer in rat jejunum
BACKGROUND: It has been suggested that one aspect of non-steroidal anti-inflammatory drugs induced intestinal damage is due to either uncoupling of mitochondrial oxidative phosphorylation or inhibition of electron transport. We investigated the latter possibility using electron paramagnetic resonance spectroscopy. RESULTS: Electron paramagnetic studies of NSAIDS on sub-mitochondrial particles revealed that indomethacin, but not with nabumetone, bound to a site near to Complex I and ubiquinone to generate a radical species. Normal rats exhibited prominent [3Fe-4S]ox signals (g ~ 2.01) at 20 K. One hour after indomethacin there was a prominent, intense and broad absorption pattern at (g ~2.07) suggesting, appearance of radical species overlapping [3Fe-4S]ox and was unaffected by pretreatment with 2,4 diamino -6-hydroxy pyrimidine. At 24 hrs, when macroscopic ulcers were seen, there was a new signal due to a nitric oxide radical (NO•). In contrast, nabumetone and 2,4 diamino-6-hydroxy pyrimidine pre-treated animals receiving indomethacin exhibited electron paramagnetic resonance spectra identical to those of controls at 24 hrs and neither was associated with small intestinal ulcers. Indomethacin and 2,4 diamino hydroxy pyrimidine pre-treated rats, but not nabumetone, had increased intestinal permeability. CONCLUSION: The results suggest that the in vivo effects of indomethacin modulate the mitochondrial respiratory chain directly at 1 h and 24 h through formation of nitric oxide. NO• appears to play an important role in the late pathogenic stages of NSAID enteropathy and may be the site for targeted treatment to reduce their toxicity
Cigarette Smoke Extract (CSE) Delays NOD2 Expression and Affects NOD2/RIPK2 Interactions in Intestinal Epithelial Cells
Genetic and environmental factors influence susceptibility to Crohn's disease (CD): NOD2 is the strongest individual genetic determinant and smoking the best-characterised environmental factor. Carriage of NOD2 mutations predispose to small-intestinal, stricturing CD, a phenotype also associated with smoking. We hypothesised that cigarette smoke extract (CSE) altered NOD2 expression and function in intestinal epithelial cells.Intestinal epithelial cell-lines (SW480, HT29, HCT116) were stimulated with CSE and nicotine (to mimic smoking) ±TNFα (to mimic inflammation). NOD2 expression was measured by qRT-PCR and western blotting; NOD2-RIPK2 interactions by co-immunoprecipitation (CoIP); nuclear NFκB-p65 by ELISA; NFκB activity by luciferase reporter assays and chemokines (CCL20, IL8) in culture supernatants by ELISA. In SW480 and HT29 cells the TNFα-induced NOD2 expression at 4 hours was reduced by CSE (p = 0.0226), a response that was dose-dependent (p = 0.003) and time-dependent (p = 0.0004). Similar effects of CSE on NOD2 expression were seen in cultured ileal biopsies from healthy individuals. In SW480 cells CSE reduced TNFα-induced NFκB-p65 translocation at 15 minutes post-stimulation, upstream of NOD2. Levels of the NOD2-RIPK2 complex were no different at 8 hours post-stimulation with combinations of CSE, nicotine and TNFα, but at 18 hours it was increased in cells stimulated with TNFα+CSE but decreased with TNFα alone (p = 0.0330); CSE reduced TNFα-induced NFκB activity (p = 0.0014) at the same time-point. At 24 hours, basal CCL20 and IL8 (p<0.001 for both) and TNFα-induced CCL20 (p = 0.0330) production were decreased by CSE. CSE also reduced NOD2 expression, CCL20 and IL8 production seen with MDP-stimulation of SW480 cells pre-treated with combinations of TNFα and CSE.CSE delayed TNFα-induced NOD2 mRNA expression and was associated with abnormal NOD2/RIPK2 interaction, reduced NFκB activity and decreased chemokine production. These effects may be involved in the pathogenesis of small-intestinal CD and may have wider implications for the effects of smoking in NOD2-mediated responses
Nitric oxide-releasing NSAIDs: a novel class of GI-sparing anti-inflammatory drugs.
The addition of a nitric oxide-releasing moiety to a number of common nonsteroidal anti-inflammatory drugs markedly reduces their toxicity in the gastrointestinal tract without interfering with their ability to inhibit prostaglandin synthesis. Moreover, the anti-inflammatory and anti-pyretic activities of the nitric-oxide releasing NSAID were comparable to the parent compound, while the anti-thrombotic activity in vivo was significantly enhanced. Nitric oxide-releasing NSAIDs may represent an alternative to existing anti-inflammatory, anti-pyretic and anti-thrombotic agents with greatly reduced toxicity in the gastrointestinal tract
- …