91 research outputs found

    Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis

    Get PDF
    © The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio

    New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling

    Get PDF
    BACKGROUND: Pharmacologic control of Cre-mediated recombination using tamoxifen-dependent activation of a Cre-estrogen receptor ligand binding domain fusion protein [CreER(T)] is widely used to modify and/or visualize cells in the mouse. METHODS AND FINDINGS: We describe here two new mouse lines, constructed by gene targeting to the Rosa26 locus to facilitate Cre-mediated cell modification. These lines should prove particularly useful in the context of sparse labeling experiments. The R26rtTACreER line provides ubiquitous expression of CreER under transcriptional control by the tetracycline reverse transactivator (rtTA); dual control by doxycycline and tamoxifen provides an extended dynamic range of Cre-mediated recombination activity. The R26IAP line provides high efficiency Cre-mediated activation of human placental alkaline phosphatase (hPLAP), complementing the widely used, but low efficiency, Z/AP line. By crossing with mouse lines that direct cell-type specific CreER expression, the R26IAP line has been used to produce atlases of labeled cholinergic and catecholaminergic neurons in the mouse brain. The R26IAP line has also been used to visualize the full morphologies of retinal dopaminergic amacrine cells, among the largest neurons in the mammalian retina. CONCLUSIONS: The two new mouse lines described here expand the repertoire of genetically engineered mice available for controlled in vivo recombination and cell labeling using the Cre-lox system

    Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the ‘‘default mode network’ ’ (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a frontoparietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD. Methods: The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups. Results: OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions

    Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    Get PDF
    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper\u27s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper\u27s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction

    Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    Get PDF
    BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching

    Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits

    Get PDF
    The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized (“genotype fitness”) instead of the classical fitness function (“phenotype fitness”). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature

    High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    Get PDF
    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon\u27s (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits

    Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study

    Get PDF
    Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses
    corecore