313 research outputs found
Introduction to the functional RG and applications to gauge theories
These lectures contain an introduction to modern renormalization group (RG)
methods as well as functional RG approaches to gauge theories. In the first
lecture, the functional renormalization group is introduced with a focus on the
flow equation for the effective average action. The second lecture is devoted
to a discussion of flow equations and symmetries in general, and flow equations
and gauge symmetries in particular. The third lecture deals with the flow
equation in the background formalism which is particularly convenient for
analytical computations of truncated flows. The fourth lecture concentrates on
the transition from microscopic to macroscopic degrees of freedom; even though
this is discussed here in the language and the context of QCD, the developed
formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School
"Renormalization Group and Effective Field Theory Approaches to Many-Body
Systems", Trento, Ital
Big-Data-Driven Materials Science and its FAIR Data Infrastructure
This chapter addresses the forth paradigm of materials research -- big-data
driven materials science. Its concepts and state-of-the-art are described, and
its challenges and chances are discussed. For furthering the field, Open Data
and an all-embracing sharing, an efficient data infrastructure, and the rich
ecosystem of computer codes used in the community are of critical importance.
For shaping this forth paradigm and contributing to the development or
discovery of improved and novel materials, data must be what is now called FAIR
-- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets
the stage for advances of methods from artificial intelligence that operate on
large data sets to find trends and patterns that cannot be obtained from
individual calculations and not even directly from high-throughput studies.
Recent progress is reviewed and demonstrated, and the chapter is concluded by a
forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W.
Andreoni), Springer 2018/201
Transactivation of EGFR by LPS induces COX-2 expression in enterocytes
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC
Small Polarons in Transition Metal Oxides
The formation of polarons is a pervasive phenomenon in transition metal oxide
compounds, with a strong impact on the physical properties and functionalities
of the hosting materials. In its original formulation the polaron problem
considers a single charge carrier in a polar crystal interacting with its
surrounding lattice. Depending on the spatial extension of the polaron
quasiparticle, originating from the coupling between the excess charge and the
phonon field, one speaks of small or large polarons. This chapter discusses the
modeling of small polarons in real materials, with a particular focus on the
archetypal polaron material TiO2. After an introductory part, surveying the
fundamental theoretical and experimental aspects of the physics of polarons,
the chapter examines how to model small polarons using first principles schemes
in order to predict, understand and interpret a variety of polaron properties
in bulk phases and surfaces. Following the spirit of this handbook, different
types of computational procedures and prescriptions are presented with specific
instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure
Minimum length effects in black hole physics
We review the main consequences of the possible existence of a minimum
measurable length, of the order of the Planck scale, on quantum effects
occurring in black hole physics. In particular, we focus on the ensuing minimum
mass for black holes and how modified dispersion relations affect the Hawking
decay, both in four space-time dimensions and in models with extra spatial
dimensions. In the latter case, we briefly discuss possible phenomenological
signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black
Holes", ed. X. Calmet (Springer, 2014
Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge
The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms
The Yeast Spore Wall Enables Spores to Survive Passage through the Digestive Tract of Drosophila
In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors
Chinese organized crime and situational context: comparing human smuggling and synthetic drugs trafficking
This article criticizes the 'ethnic' conception of organized crime and puts forward an alternative view that does not put ethnicity first, but rather social networks and situational context. It focuses upon Chinese organized crime, a phenomenon where the preoccupation with ethnicity is paramount, and compares findings from extensive research into two different transnational criminal activities that are carried out by Chinese offenders in the Netherlands. The first topic, human smuggling, is well researched, whereas research into the second topic, trafficking in precursors (the basic ingredients for the production of synthetic drugs), is largely lacking. The article highlights the major theoretical and empirical similarities and differences between these two criminal activities and discusses the relevance of the main findings for theory and research
Neuroticism Modifies Psychophysiological Responses to Fearful Films
Background: Neuroticism is a personality component frequently found in anxious and depressive psychiatric disorders. The influence of neuroticism on negative emotions could be due to its action on stimuli related to fear and sadness, but this remains debated. Our goal was thus to better understand the impact of neuroticism through verbal and physiological assessment in response to stimuli inducing fear and sadness as compared to another negative emotion (disgust).¦Methods: Fifteen low neurotic and 18 high neurotic subjects were assessed on an emotional attending task by using film excerpts inducing fear, disgust, and sadness. We recorded skin conductance response (SCR) and corrugator muscle activity (frowning) as indices of emotional expression.¦Results: SCR was larger in high neurotic subjects than in low neurotics for fear relative to sadness and disgust. Moreover, corrugator activity and SCR were larger in high than in low neurotic subjects when fear was induced.¦Conclusion: After decades of evidence that individuals higher in neuroticism experience more intense emotional reactions to even minor stressors, our results indicate that they show greater SCR and expressive reactivity specifically to stimuli evoking fear rather than to those inducing sadness or disgust. Fear processing seems mainly under the influence of neuroticism. This modulation of autonomic activity by neurotics in response to threat/fear may explain their increased vulnerability to anxious psychopathologies such as PTSD (post traumatic stress disorder)
Dynein-Dynactin Complex Is Essential for Dendritic Restriction of TM1-Containing Drosophila Dscam
BACKGROUND: Many membrane proteins, including Drosophila Dscam, are enriched in dendrites or axons within neurons. However, little is known about how the differential distribution is established and maintained.
METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the mechanisms underlying the dendritic targeting of Dscam[TM1]. Through forward genetic mosaic screens and by silencing specific genes via targeted RNAi, we found that several genes, encoding various components of the dynein-dynactin complex, are required for restricting Dscam[TM1] to the mushroom body dendrites. In contrast, compromising dynein/dynactin function did not affect dendritic targeting of two other dendritic markers, Nod and Rdl. Tracing newly synthesized Dscam[TM1] further revealed that compromising dynein/dynactin function did not affect the initial dendritic targeting of Dscam[TM1], but disrupted the maintenance of its restriction to dendrites.
CONCLUSIONS/SIGNIFICANCE: The results of this study suggest multiple mechanisms of dendritic protein targeting. Notably, dynein-dynactin plays a role in excluding dendritic Dscam, but not Rdl, from axons by retrograde transport
- …