18 research outputs found

    Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When a cell is exposed to a time-varying magnetic field, this leads to an induced voltage on the cytoplasmic membrane, as well as on the membranes of the internal organelles, such as mitochondria. These potential changes in the organelles could have a significant impact on their functionality. However, a quantitative analysis on the magnetically-induced membrane potential on the internal organelles has not been performed.</p> <p>Methods</p> <p>Using a two-shell model, we provided the first analytical solution for the transmembrane potential in the organelle membrane induced by a time-varying magnetic field. We then analyzed factors that impact on the polarization of the organelle, including the frequency of the magnetic field, the presence of the outer cytoplasmic membrane, and electrical and geometrical parameters of the cytoplasmic membrane and the organelle membrane.</p> <p>Results</p> <p>The amount of polarization in the organelle was less than its counterpart in the cytoplasmic membrane. This was largely due to the presence of the cell membrane, which "shielded" the internal organelle from excessive polarization by the field. Organelle polarization was largely dependent on the frequency of the magnetic field, and its polarization was not significant under the low frequency band used for transcranial magnetic stimulation (TMS). Both the properties of the cytoplasmic and the organelle membranes affect the polarization of the internal organelle in a frequency-dependent manner.</p> <p>Conclusions</p> <p>The work provided a theoretical framework and insights into factors affecting mitochondrial function under time-varying magnetic stimulation, and provided evidence that TMS does not affect normal mitochondrial functionality by altering its membrane potential.</p

    Broadened Population-Level Frequency Tuning in Human Auditory Cortex of Portable Music Player Users

    Get PDF
    Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test). However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole

    Bioelectric Potentials

    No full text
    corecore