13 research outputs found

    Optimal search strategies for identifying sound clinical prediction studies in EMBASE

    Get PDF
    BACKGROUND: Clinical prediction guides assist clinicians by pointing to specific elements of the patient's clinical presentation that should be considered when forming a diagnosis, prognosis or judgment regarding treatment outcome. The numbers of validated clinical prediction guides are growing in the medical literature, but their retrieval from large biomedical databases remains problematic and this presents a barrier to their uptake in medical practice. We undertook the systematic development of search strategies ("hedges") for retrieval of empirically tested clinical prediction guides from EMBASE. METHODS: An analytic survey was conducted, testing the retrieval performance of search strategies run in EMBASE against the gold standard of hand searching, using a sample of all 27,769 articles identified in 55 journals for the 2000 publishing year. All articles were categorized as original studies, review articles, general papers, or case reports. The original and review articles were then tagged as 'pass' or 'fail' for methodologic rigor in the areas of clinical prediction guides and other clinical topics. Search terms that depicted clinical prediction guides were selected from a pool of index terms and text words gathered in house and through request to clinicians, librarians and professional searchers. A total of 36,232 search strategies composed of single and multiple term phrases were trialed for retrieval of clinical prediction studies. The sensitivity, specificity, precision, and accuracy of search strategies were calculated to identify which were the best. RESULTS: 163 clinical prediction studies were identified, of which 69 (42.3%) passed criteria for scientific merit. A 3-term strategy optimized sensitivity at 91.3% and specificity at 90.2%. Higher sensitivity (97.1%) was reached with a different 3-term strategy, but with a 16% drop in specificity. The best measure of specificity (98.8%) was found in a 2-term strategy, but with a considerable fall in sensitivity to 60.9%. All single term strategies performed less well than 2- and 3-term strategies. CONCLUSION: The retrieval of sound clinical prediction studies from EMBASE is supported by several search strategies

    Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews

    Get PDF
    Background: The interest in prognostic reviews is increasing, but to properly review existing evidence an accurate search filer for finding prediction research is needed. The aim of this paper was to validate and update two previously introduced search filters for finding prediction research in Medline: the Ingui filter and the Haynes Broad filter. Methodology/Principal Findings: Based on a hand search of 6 general journals in 2008 we constructed two sets of papers. Set 1 consisted of prediction research papers (n = 71), and set 2 consisted of the remaining papers (n = 1133). Both search filters were validated in two ways, using diagnostic accuracy measures as performance measures. First, we compared studies in set 1 (reference) with studies retrieved by the search strategies as applied in Medline. Second, we compared studies from 4 published systematic reviews (reference) with studies retrieved by the search filter as applied in Medline. Next -using word frequency methods - we constructed an additional search string for finding prediction research. Both search filters were good in identifying clinical prediction models: sensitivity ranged from 0.94 to 1.0 using our hand search as reference, and 0.78 to 0.89 using the systematic reviews as reference. This latter performance measure even increased to around 0.95 (range 0.90 to 0.97) when either search filter was combined with the additional string that we developed. Retrieval rate of explorative prediction research was poor, both using our hand search or our systematic review as reference, and even combined with our additional search string: sensitivity ranged from 0.44 to 0.85. Conclusions/Significance: Explorative prediction research is difficult to find in Medline, using any of the currently available search filters. Yet, application of either the Ingui filter or the Haynes broad filter results in a very low number missed clinical prediction model studie

    Chapter 12: Systematic Review of Prognostic Tests

    Get PDF
    A number of new biological markers are being studied as predictors of disease or adverse medical events among those who already have a disease. Systematic reviews of this growing literature can help determine whether the available evidence supports use of a new biomarker as a prognostic test that can more accurately place patients into different prognostic groups to improve treatment decisions and the accuracy of outcome predictions. Exemplary reviews of prognostic tests are not widely available, and the methods used to review diagnostic tests do not necessarily address the most important questions about prognostic tests that are used to predict the time-dependent likelihood of future patient outcomes. We provide suggestions for those interested in conducting systematic reviews of a prognostic test. The proposed use of the prognostic test should serve as the framework for a systematic review and to help define the key questions. The outcome probabilities or level of risk and other characteristics of prognostic groups are the most salient statistics for review and perhaps meta-analysis. Reclassification tables can help determine how a prognostic test affects the classification of patients into different prognostic groups, hence their treatment. Review of studies of the association between a potential prognostic test and patient outcomes would have little impact other than to determine whether further development as a prognostic test might be warranted

    Overview of data-synthesis in systematic reviews of studies on outcome prediction models

    Get PDF
    Background: Many prognostic models have been developed. Different types of models, i.e. prognostic factor and outcome prediction studies, serve different purposes, which should be reflected in how the results are summarized in reviews. Therefore we set out to investigate how authors of reviews synthesize and report the results of primary outcome prediction studies. Methods: Outcome prediction reviews published in MEDLINE between October 2005 and March 2011 were eligible and 127 Systematic reviews with the aim to summarize outcome prediction studies written in English were identified for inclusion. Characteristics of the reviews and the primary studies that were included were independently assessed by 2 review authors, using standardized forms. Results: After consensus meetings a total of 50 systematic reviews that met the inclusion criteria were included. The type of primary studies included (prognostic factor or outcome prediction) was unclear in two-thirds of the reviews. A minority of the reviews reported univariable or multivariable point estimates and measures of dispersion from the primary studies. Moreover, the variables considered for outcome prediction model development were often not reported, or were unclear. In most reviews there was no information about model performance. Quantitative analysis was performed in 10 reviews, and 49 reviews assessed the primary studies qualitatively. In both analyses types a range of different methods was used to present the results of the outcome prediction studies. Conclusions: Different methods are applied to synthesize primary study results but quantitative analysis is rarely performed. The description of its objectives and of the primary studies is suboptimal and performance parameters of the outcome prediction models are rarely mentioned. The poor reporting and the wide variety of data synthesis strategies are prone to influence the conclusions of outcome prediction reviews. Therefore, there is much room for improvement in reviews of outcome prediction studies. (aut.ref.

    Glomerular disease search filters for Pubmed, Ovid Medline, and Embase: a development and validation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tools to enhance physician searches of Medline and other bibliographic databases have potential to improve the application of new knowledge in patient care. This is particularly true for articles about glomerular disease, which are published across multiple disciplines and are often difficult to track down. Our objective was to develop and test search filters for PubMed, Ovid Medline, and Embase that allow physicians to search within a subset of the database to retrieve articles relevant to glomerular disease.</p> <p>Methods</p> <p>We used a diagnostic test assessment framework with development and validation phases. We read a total of 22,992 full text articles for relevance and assigned them to the development or validation set to define the reference standard. We then used combinations of search terms to develop 997,298 unique glomerular disease filters. Outcome measures for each filter included sensitivity, specificity, precision, and accuracy. We selected optimal sensitive and specific search filters for each database and applied them to the validation set to test performance.</p> <p>Results</p> <p>High performance filters achieved at least 93.8% sensitivity and specificity in the development set. Filters optimized for sensitivity reached at least 96.7% sensitivity and filters optimized for specificity reached at least 98.4% specificity. Performance of these filters was consistent in the validation set and similar among all three databases.</p> <p>Conclusions</p> <p>PubMed, Ovid Medline, and Embase can be filtered for articles relevant to glomerular disease in a reliable manner. These filters can now be used to facilitate physician searching.</p
    corecore