15 research outputs found

    Counseling patients about sexual health when considering post-prostatectomy radiation treatment

    Get PDF
    Prostate cancer is the second most frequently diagnosed cancer in men in the United States. Many men with clinically localized prostate cancer survive for 15 years or more. Although early detection and successful definitive treatments are increasingly common, a debate regarding how aggressively to treat prostate cancer is ongoing because of the effect of aggressive treatment on the quality of life, including sexual functioning. We examined current research on the effect of post-prostatectomy radiation treatment on sexual functioning, and suggest a way in which patient desired outcomes might be taken into consideration while making decisions with regard to the timing of radiation therapy after prostatectomy

    Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination

    No full text
    The manufacture of a range of bulk and fine chemicals, including flame retardants, disinfectants and antibacterial and antiviral drugs, involves bromination1. Conventional bromination methods typically use elemental bromine, a pollutant and a safety and health hazard. Attempts to develop alternative and more benign strategies have been inspired by haloperoxidase enzymes, which achieve selective halogenation at room temperature and nearly neutral pH by oxidizing inorganic halides with hydrogen peroxide2,3. The enzyme vanadium bromoperoxidase has attracted particular interest4,5 in this regard, and several homogeneous inorganic catalysts mimicking its activity are available6, 7, 8, 9, 10, 11, although they are limited by the requirement for strongly acidic reaction media. A heterogenous mimic operating at neutral pH has also been reported12, but shows only modest catalytic activity. Here we describe a tungstate-exchanged layered double hydroxide that catalyses oxidative bromination and bromide-assisted epoxidation reactions in a selective manner. We find that the catalyst is over 100 times more active than its homogeneous analogue. The low cost and heterogeneous character of this system, together with its ability to operate efficiently under mild conditions using bromides rather than elemental bromine, raise the prospect of being able to develop a clean and efficient industrial route to brominated chemicals and drugs and epoxide intermediates.info:eu-repo/semantics/publishe
    corecore