12 research outputs found

    A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy

    Get PDF
    BACKGROUND: Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1(ADA)-infected NOD.Cg-Prkdc (scid) Il2rg (tm1Wjl)/SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. RESULTS: Plasma viral loads were reduced by two log(10) or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. CONCLUSION: Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-017-0344-7) contains supplementary material, which is available to authorized users

    Prolonged-acting, Multi-targeting Gallium Nanoparticles Potently Inhibit Growth of Both HIV and Mycobacteria in Co-Infected Human Macrophages

    Get PDF
    Human immunodeficiency virus (HIV) infection and Mycobacterium tuberculosis (TB) are responsible for two of the major global human infectious diseases that result in significant morbidity, mortality and socioeconomic impact. Furthermore, severity and disease prevention of both infections is enhanced by co-infection. Parallel limitations also exist in access to effective drug therapy and the emergence of resistance. Furthermore, drug-drug interactions have proven problematic during treatment of co-incident HIV and TB infections. Thus, improvements in drug access and simplified treatment regimens are needed immediately. One of the key host cells infected by both HIV and TB is the mononuclear phagocyte (MP; monocyte, macrophage and dendritic cell). Therefore, we hypothesized that one way this can be achieved is through drug-targeting by a nanoformulated drug that ideally would be active against both HIV and TB. Accordingly, we validated macrophage targeted long acting (sustained drug release) gallium (Ga) nanoformulation against HIV-mycobacterium co-infection. The multi-targeted Ga nanoparticle agent inhibited growth of both HIV and TB in the macrophage. The Ga nanoparticles reduced the growth of mycobacterium and HIV for up to 15 days following single drug loading. These results provide a potential new approach to treat HIV-TB co-infection that could eventually lead to improved clinical outcomes

    Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy

    Get PDF
    Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection

    Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA

    Get PDF
    The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect.EFdA treatment resulted in reduction of HIV-RNA in PB to undetectable levels in the majority of treated mice by 3 weeks post-treatment. HIV-RNA levels in cervicovaginal lavage of EFdA-treated BLT mice also declined to undetectable levels demonstrating strong penetration of EFdA into the FRT. Our results also demonstrate a strong systemic suppression of HIV replication in all tissues analyzed. In particular, we observed more than a 2-log difference in HIV-RNA levels in the GI tract and FRT of EFdA-treated BLT mice compared to untreated HIV-infected control mice. In addition, HIV-RNA was also significantly lower in the lymph nodes, liver, lung, spleen of EFdA-treated BLT mice compared to untreated HIV-infected control mice. Furthermore, EFdA treatment prevented the depletion of CD4+ T cells in the PB, mucosal tissues and lymphoid tissues.Our findings indicate that EFdA is highly effective in controlling viral replication and preserving CD4+ T cells in particular with high efficiency in the GI and FRT tract. Thus, EFdA represents a strong potential candidate for further development as a part of antiretroviral therapy regimens

    From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity

    No full text
    The lymphatic system serves an integral role in fluid homeostasis, lipid metabolism and immune control. In cancer, the lymph nodes that drain solid tumours are a primary site of metastasis, and recent studies have suggested intrinsic links between lymphatic function, lipid deposition, obesity and atherosclerosis. Advances in the current understanding of the role of the lymphatics in pathological change and immunity have driven the recognition that lymph-targeted delivery has the potential to transform disease treatment and vaccination. In addition, the design of lymphatic delivery systems has progressed from simple systems that rely on passive lymphatic access to sophisticated structures that use nanotechnology to mimic endogenous macromolecules and lipid conjugates that 'hitchhike' onto lipid transport processes. Here, we briefly summarize the lymphatic system in health and disease and the varying mechanisms of lymphatic entry and transport, as well as discussing examples of lymphatic delivery that have enhanced therapeutic utility. We also outline future challenges to effective lymph-directed therapy
    corecore