1,441 research outputs found

    Accretion, Primordial Black Holes and Standard Cosmology

    Full text link
    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Direct Multifield Volume Ray Casting of Fiber Surfaces

    Get PDF
    Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction. We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data, dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    A Search for Gravitational Milli–Lenses

    Get PDF
    We have searched for gravitational milli–lens systems by examining VLBI maps of ~ 300 flat–spectrum radio sources. So far we have followed up 7 candidates, with separations in the range 2–20 mas. None have been confirmed as lenses but several of them can not yet be definitively ruled out. If there are no milli-lenses in this sample then uniformly–distributed black holes of 10^6 to 10^8 M_⊙ cannot contribute more than ~ 1% of the closure density

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co
    corecore