50 research outputs found

    Features, Causes and Consequences of Splanchnic Sequestration of Amino Acid in Old Rats

    Get PDF
    RATIONALE: In elderly subjects, splanchnic extraction of amino acids (AA) increases during meals in a process known as splanchnic sequestration of amino acids (SSAA). This process potentially contributes to the age-related progressive decline in muscle mass via reduced peripheral availability of dietary AA. SSAA mechanisms are unknown but may involve an increased net utilization of ingested AA in the splanchnic area. OBJECTIVES: Using stable isotope methodology in fed adult and old rats to provide insight into age-related SSAA using three hypotheses: 1) an increase in protein synthesis in the gut and/or the liver, 2) an increase in AA oxidation related to an increased ureagenesis, and 3) Kupffer cell (KC) activation consequently to age-related low-grade inflammation. FINDINGS: Splanchnic extraction of Leu (SPELeu) was doubled in old rats compared to adult rats and was not changed after KC inactivation. No age-related effects on gut and liver protein synthesis were observed, but urea synthesis was lower in old rats and negatively correlated to liver Arg utilization. Net whole-body protein synthesis and arterial AA levels were lower in old rats and correlated negatively with SPELeu. CONCLUSION: SSAA is not the consequence of age-related alterations in ureagenesis, gut or liver protein synthesis or of KC activity. However, SSAA may be related to reduced net whole-body protein synthesis and consequently to the reduced lean body mass that occurs during aging

    Reading and writing omes

    No full text

    Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

    Get PDF
    Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories1–5. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms2–4,6–8, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression9–11. Here, we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive, or Polycomb-repressed states and observed distinct chromatin organizations for each state. Remarkably, all three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed chromatin shows the densest packing and most intriguing folding behaviour in which packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins plays an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that is directly relevant to genome regulation
    corecore