25 research outputs found

    Sequences Sufficient for Programming Imprinted Germline DNA Methylation Defined

    Get PDF
    Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology

    Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor

    Full text link
    Broad and deep tumour genome sequencing has shed new light on tumour heterogeneity and provided important insights into the evolution of metastases arising from different clones. There is an additional layer of complexity, in that tumour evolution may be influenced by selective pressure provided by therapy, in a similar fashion to that occurring in infectious diseases. Here we studied tumour genomic evolution in a patient (index patient) with metastatic breast cancer bearing an activating PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PI(3)Kalpha) mutation. The patient was treated with the PI(3)Kalpha inhibitor BYL719, which achieved a lasting clinical response, but the patient eventually became resistant to this drug (emergence of lung metastases) and died shortly thereafter. A rapid autopsy was performed and material from a total of 14 metastatic sites was collected and sequenced. All metastatic lesions, when compared to the pre-treatment tumour, had a copy loss of PTEN (phosphatase and tensin homolog) and those lesions that became refractory to BYL719 had additional and different PTEN genetic alterations, resulting in the loss of PTEN expression. To put these results in context, we examined six other patients also treated with BYL719. Acquired bi-allelic loss of PTEN was found in one of these patients, whereas in two others PIK3CA mutations present in the primary tumour were no longer detected at the time of progression. To characterize our findings functionally, we examined the effects of PTEN knockdown in several preclinical models (both in cell lines intrinsically sensitive to BYL719 and in PTEN-null xenografts derived from our index patient), which we found resulted in resistance to BYL719, whereas simultaneous PI(3)K p110beta blockade reverted this resistance phenotype. We conclude that parallel genetic evolution of separate metastatic sites with different PTEN genomic alterations leads to a convergent PTEN-null phenotype resistant to PI(3)Kalpha inhibitio

    Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations

    Get PDF
    While tumor genome sequencing has become widely available in clinical and research settings, the interpretation of tumor somatic variants remains an important bottleneck. Here we present the Cancer Genome Interpreter, a versatile platform that automates the interpretation of newly sequenced cancer genomes, annotating the potential of alterations detected in tumors to act as drivers and their possible effect on treatment response. The results are organized in different levels of evidence according to current knowledge, which we envision can support a broad range of oncology use cases. The resource is publicly available at http://www.cancergenomeinterpreter.org.This project has received funding from Fundació La Marató de TV3, the European Union's Horizon 2020 research and innovation programme 2014-2020 under grant agreement number 634143, and by the European Research Council (Consolidator Grant 682398). IRB Barcelona is a recipient of a Severo Ochoa Centre of Excellence Award from the Spanish Ministry of Economy and Competitiveness (MINECO; Government of Spain) and is supported by CERCA (Generalitat de Catalunya). DT is supported by project SAF2015-74072-JIN funded by the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). CR-P is funded by a FPI MINECO grant (BES-2013-063354). AG-P is supported by a Ramon y Cajal fellowship (RYC-2013-14554)

    ‘Overcoming the Bottleneck’: Knowledge Architectures for Genomic Data Interpretation in Oncology

    Full text link
    International audienceIn recent years, oncology transitioned from its traditional, organ-based approach to 'precision oncology' centered on molecular alterations. As a result, it has become to a significant extent a 'data-centric' domain. Its practices increasingly rely on a sophisticated techno-scientific infrastructure that generates massive amounts of data in need of consistent, appropriate interpretations. Attempts to overcome the interpretation bottleneck have led to the establishment of a complex landscape of interrelated resources that, while displaying distinct characteristics and design choices, also entertain horizontal and vertical relations. Although there is no denying that the data-centric nature of contemporary oncology raises a number of key issues related to the production and circulation of data, we suggest that the focus on data use and re-use should be complemented by a focus on interpretation. Oncology practitioners refer to data interpretation resources as 'knowledgebases', an actor's category designed to differentiate them from generic, multipurpose databases. Their major purpose is the definition and identification of clinically actionable alterations. A heavy investment in human curation, of a clinical rather than exclusively scientific nature is needed to make them valuable, but each knowledgebas

    CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer

    Full text link
    CIViC is an expert-crowdsourced knowledgebase for Clinical Interpretation of Variants in Cancer describing the therapeutic, prognostic, diagnostic and predisposing relevance of inherited and somatic variants of all types. CIViC is committed to open-source code, open-access content, public application programming interfaces (APIs) and provenance of supporting evidence to allow for the transparent creation of current and accurate variant interpretations for use in cancer precision medicine
    corecore