19 research outputs found

    Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico

    No full text
    Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively

    Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors

    No full text
    Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors

    Supplementing a Phytogenic Feed Additive Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic Diets

    No full text
    Feeding with high-concentrate diets increases the risk of subacute ruminal acidosis (SARA). This experiment was conducted to evaluate whether supplementing a phytogenic feed additive based on L-menthol, thymol, eugenol, mint oil (Mentha arvensis) and cloves powder (Syzygium aromaticum) (PHY) can amend the ruminal fermentation profile, modulate the risk of SARA and reduce inflammation in cattle. The experiment was designed as a crossover design with nine non-lactating Holstein cows, and was conducted in two experimental runs. In each run, cows were fed a 100% forage diet one week (wk 0), and were then transitioned stepwise over one week (0 to 65% concentrate, wk adapt.) to a high concentrate diet that was fed for 4 weeks. Animals were fed diets either with PHY or without (CON). The PHY group had an increased ruminal pH compared to CON, reduced time to pH < 5.8 in wk 3, which tended to decrease further in wk 4, reduced the ruminal concentration of D-lactate, and tended to decrease total lactate (wk 3). In wk 2, PHY increased acetate, butyrate, isobutyrate, isovalerate, and the acetate to propionate ratio compared to CON. Phytogenic supplementation reduced inflammation compared to CON in wk 3. Overall, PHY had beneficial effects on ruminal fermentation, reduced inflammation, and modulated the risk of SARA starting from wk 3 of supplementation

    Effect of Duration of High-Grain Feeding on Chewing, Feeding Behavior, and Salivary Composition in Cows with or without a Phytogenic Feed Supplement

    No full text
    Switching diets from forage to a high-grain (HG) diet increases the risk of rumen fermentation disorders in cattle. However, the effects of the duration of the HG feeding, after the diet switch, on animal behavior and health have received considerably less attention. This experiment primarily aimed to assess the effects of the duration of an HG diet on the chewing, eating, and lying behavior and salivation dynamics in a control group (CON) and a group of cows receiving a phytogenic feed supplement (TRT) at 0.04% (DM basis), which included L-menthol, thymol, eugenol, mint oil, and cloves powder. The experiment was a crossover design with nine non-lactating cows, and two experimental periods with an intermediate washout of four weeks. In each period, the cows were first fed a forage diet for a week to collect baseline measurements representing week 0; then, the diet was switched over a week to HG (65% concentrate), which was fed for four continuous weeks (week 1, week 2, week 3, and week 4 on an HG diet, respectively). The cows were divided in two groups of four and five animals and were randomly allocated to CON or TRT. The data analysis revealed that at the start of the HG feeding, the dry matter intake and the cows\u27 number of lying bouts increased, but the eating time, rumination time, and meal frequency decreased, resulting in a greater eating rate. We also found that an advanced duration on an HG diet further decreased the rumination time, total chewing time, chewing index, and sorting in favor of short feed particles, with the lowest values in week 4. The feed bolus size increased but feed the ensalivation decreased in week 4 compared to week 0. The dietary switch increased salivary lysozyme activity, and the advanced duration on the HG diet increased salivary pH, but salivary phosphate decreased in weeks 1 and 2 on the HG diet. Supplementation with TRT increased sorting in favor of physically effective NDF (peNDF) in week 2 and increased salivary pH in week 4 on an HG diet. Overall, the negative effects of the HG diet in cattle are more pronounced during the initial stage of the HG feeding. However, several detrimental effects were exacerbated with the cows\u27 advanced duration on feed, with host adaptive changes still observed after 3 and 4 weeks following the diet switch. The TRT mitigated some of the negative effects through the temporal improvement of the salivary properties and the intake of peNDF, which are known to modulate rumen fermentation

    Effects of High Concentrate-Induced Subacute Ruminal Acidosis Severity on Claw Health in First-Lactation Holstein Cows

    No full text
    This study aimed to evaluate the effects of diet-induced subacute rumen acidosis (SARA) severity during transition and the early lactation period on claw health in 24 first-lactation Holstein heifers. All heifers were fed a 30% concentrate (in dry matter) close-up ration three weeks before calving, then switched to a high-concentrate ration (60% dry matter), which was fed until the 70th day in milk (DIM) to induce SARA. Thereafter, all cows were fed the same post-SARA ration with around 36% concentrate in dry matter. Hoof trimming was performed before calving (visit 1), at 70 (visit 2) and at 160 DIM (visit 3). All claw lesions were recorded, and a Cow Claw Score (CCS) was calculated for each cow. Locomotion scores (LCS 1-5) were assessed at two-week intervals. Intraruminal sensors for continuous pH measurements were used to determine SARA (pH below 5.8 for more than 330 min in 24 h). The cluster analysis grouped the cows retrospectively into light (≤11%; n = 9), moderate (>11-30%; n = 8) SARA groups, based on the percentage of days individual cows experienced SARA. Statistically significant differences were found between SARA groups light and severe in terms of lameness incidence (p = 0.023), but not for LCS and claw lesion prevalence. Further, the analysis of maximum likelihood estimates revealed that for each day experiencing SARA, the likelihood of becoming lame increased by 2.52% (p = 0.0257). A significant increase in white line lesion prevalence was observed between visits 2 and 3 in the severe SARA group. The mean CCS in severe SARA group cows were higher at each visit compared to cows in the other two groups, but without statistical significance. Overall, this is the first study indicating that first-lactation cows fed a similar high-concentrate diet but with a higher severity of SARA tended to have poorer claw health, albeit with only partial statistical evidence

    A two years study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds

    No full text
    We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the 75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance

    Bovine rumen epithelial miRNA-mRNA dynamics reveals post-transcriptional regulation of gene expression upon transition to high-grain feeding and phytogenic supplementation

    No full text
    The rumen epithelium has a pivotal role in nutrient uptake and host health. This study aimed to explore the role of microRNAs (miRNAs) in the epithelial transcriptome during diet transition from forage to high-grain feeding and the modulation through supplementation with a phytogenic feed additive. Rumen biopsies were collected from 9 ruminally-cannulated non-lactating Holstein cows fed a baseline forage diet (FD) and then transitioned to high-grain feeding (HG; 65% concentrate on a dry matter basis). Cows were randomly allocated into a control group (CON, n = 5) and a group supplemented with a phytogenic feed additive (PHY, n = 4). MiRNA and mRNA sequencing was performed in parallel and transcripts were analyzed for differential expression, pathway enrichment analysis, and miRNA-mRNA interaction networks. We identified 527 miRNAs shared by all samples of the rumen epithelium, from which, bta-miR-21-5p, bta-miR-143 and bta-miR-24-3p were the most expressed. Six miRNAs were differentially expressed between CON and PHY and 8 miRNAs between FD and HG feeding, which were mainly associated with fat metabolism. Transcriptome analysis identified 9481 differentially expressed genes (DEGs) between FD and HG, whereas PHY supplementation resulted in 5 DEGs. DEGs were mainly involved in epithelium development and morphogenesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with tricarboxylic acid and short chain fatty acid (SCFA) metabolism were enriched in DEGs between diets. MiRNA target prediction and anti-correlation analysis was used to construct networks and identify DEGs targeted by DE miRNAs responsive to diet or PHY. This study allowed the identification of potential miRNA regulation mechanisms of gene expression during transition from FD to HG feeding and phytogenic supplementation, evidencing a direct role of miRNAs in host responses to nutrition
    corecore