395 research outputs found

    Dusty, Radiation Pressure Dominated Photoionization. II. Multi-Wavelength Emission Line Diagnostics for Narrow Line Regions

    Full text link
    Seyfert narrow line region (NLR) emission line ratios are remarkably uniform, displaying only ~0.5 dex variation between galaxies, and even less within an individual object. Previous photoionization and shock models of this region were unable to explain this observation without the introduction of arbitrary assumptions or additional parameters. Dusty, radiation pressure dominated photoionization models provide a simple physical mechanism which can reproduce this spectral uniformity between different objects. In the first paper of this series we described this model and its implementation in detail, as well as presenting grids of model emission lines and examining the model structures. Here we explore these models further, demonstrating their ability to reproduce the observed Seyfert line ratios on standard line diagnostic diagrams in both the optical and UV. We also investigate the effects that the variation of metallicity, density and ionizing spectrum have upon both the new paradigm and the standard photoionization models used hitherto. Along with the standard diagnostic diagrams we provide several new diagnostic diagrams in the UV, Optical and IR. These new diagrams can provide further tests of the dusty, radiation pressure photoionization paradigm as well as being used as diagnostics of the metallicity, density and ionizing spectrum of the emission line clouds.Comment: Accepted by ApJS, full pdf including figures can be obtained at http://www.mso.anu.edu.au/~bgroves/Papers/ApJS2.pd

    Photoionization models for extreme Lyα\alpha λ\lambda1216 and HeII λ\lambda1640 ratios in quasar halos, and PopIII vs AGN diagnostics

    Full text link
    We explore mechanisms to produce extremely high Ly-alpha/HeII flux ratios, or to enhance the observed number of Ly-alpha photons per incident ionizing photon, in extended AGN-photoionized nebulae at high-redshift. Using photoionization models, we explore the impact of ionization parameter, gas metallicity, ionizing spectrum, electron energy distribution, and cloud viewing angle on the relative fluxes of Ly-alpha, HeII and other lines, and on the observed number of Ly-alpha photons per incident ionizing photon. We find that low ionization parameter, a relatively soft or filtered ionizing spectrum, low gas metallicity, kappa-distributed electron energies, or reflection of Ly-alpha photons by HI can all result in significantly enhanced Ly-alpha relative to other lines (>10%), with log Ly-alpha/HeII reaching values up to 4.6. In the cases of low gas metallicity, reflection by HI, or a hard or filtered ionizing spectrum, the observed number of Ly-alpha photons per incident ionizing photon is itself significantly enhanced above the nominal Case B value of 0.66 due to collisional excitation, reaching values up to 5.3 in our 'extreme case' model. At low gas metallicity (e.g. 0.1 x Solar), the production of Ly-alpha is predominantly via collisional excitation rather than recombination. In addition, we find that collisional excitation of Ly-alpha becomes more efficient if the ionizing continuum is pre-filtered through an optically thin screen of gas closer to the AGN. We also show that Ly-alpha / HeII ratios of the z~3.5 quasars studied by Borisova et al. (2016) are consistent with AGN-photoionization of gas with moderate to low metallicity and/or low ionization parameter, without requiring exotic ionization/excitation mechanisms such as strong line-transfer effects. We also present UV-optical diagnostic diagrams to distinguish between photoionization by Pop III stars and AGN photoionization.Comment: Accepted for publication in A&A. 14 pages, 9 figures. Abstract slightly shortened to meet arxiv character limi

    The AGN-starburst connection, Galactic superwinds, and M_BH - sigma

    Full text link
    Recent observations of young galaxies at redshifts z ~ 3 have revealed simultaneous AGN and starburst activity, as well as galaxy-wide superwinds. I show that there is probably a close connection between these phenomena by extending an earlier treatment of the M_BH - sigma relation (King, 2003). As the black hole grows, an outflow drives a shell into the surrounding gas. This stalls after a dynamical time at a size determined by the hole's current mass and thereafter grows on the Salpeter timescale. The gas trapped inside this bubble cools and forms stars and is recycled as accretion and outflow. The consequent high metallicity agrees with that commonly observed in AGN accretion. Once the hole reaches a critical mass this region attains a size such that the gas can no longer cool efficiently. The resulting energy-driven flow expels the remaining gas as a superwind, fixing both the M_BH - sigma relation and the total stellar bulge mass at values in good agreement with observation. Black hole growth thus produces starbursts and ultimately a superwind.Comment: ApJ, in press, 4 page
    corecore