57 research outputs found

    Waste to Carbon: Preliminary Research on Mushroom Spent Compost Torrefaction

    Get PDF
    Mushroom production in Poland is an important and dynamically developing element of diverse agriculture. Mushroom spent compost (MSC) is major waste generated during production, i.e., MSC: mushrooms is ~5:1. To date, the main use of MSC is soil application as organic fertilizer. To date, several methods of MSC treatment have been researched and developed including production of compost, bioethanol, biogas, enzyme lactase, xylo-saccharides, and hydrogen. Torrefaction may be considered a novel approach for biomass valorization. Thus, we are pioneering the potential use of MSC valorization via torrefaction. We explored valorizing the waste biomass of MSC via thermal treatment – torrefaction (‘roasting’) to produce biochar with improved fuel properties. Here for the first time, we examined and summarized the MSC torrefaction thermogravimetric analyses, fuel properties data of raw biomass of MSC and biochars generated from MSC via torrefaction. The effects of torrefaction temperature (200~300 °C), process time (20~60 min), on fuel properties of the resulting biochars were summarized. The dataset contains results of thermogravimetric analysis (TGA) as well as proximate analyses of MSC and generated biochars. The presented data are useful in determining MSC torrefaction reaction kinetics, activation energy and to further techno-economical modeling of the feasibility of MSC valorization via torrefaction. MSC torrefaction could be exploited as part of valorization resulting from a synergy between an intensive mushroom production with the efficient production of high-quality renewable fuel

    Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel

    Get PDF
    In this work, for the first time, the feasibility of obtaining carbonized refuse-derived fuel (CRDF) pelletization from municipal solid waste (MSW) was shown. Production of CRDF by torrefaction of MSW could be the future of recycling technology. The objective was to determine the applied pressure needed to produce CRDF pellets with compressive strength (CS) comparable to conventional biomass pellets. Also, the hypothesis that a binder (water glass (WG)) applied to CRDF as a coating can improve CS was tested. The pelletizing was based on the lab-scale production of CRDF pellets with pressure ranging from 8.5 MPa to 76.2 MPa. The resulting CS pellets increased from 0.06 MPa to 3.44 MPa with applied pelletizing pressure up to the threshold of 50.8 MPa, above which it did not significantly improve (p \u3c 0.05). It was found that the addition of 10% WG to 50.8 MPa CRDF pellets or coating them with WG did not significantly improve the CS (p \u3c 0.05). It was possible to produce durable pellets from CRDF. The CS was comparable to pine pellets. This research advances the concept of energy recovery from MSW, particularly by providing practical information on densification of CRDF originating from the torrefaction of the flammable fraction of MSW–refuse-derived fuel. Modification of CRDF through pelletization is proposed as preparation of lower volume fuel with projected lower costs of its storage and transportation and for a wider adoption of this technology

    Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal

    Get PDF
    Poland, being the 3rd largest and growing producer of mushrooms in the world, generates almost 25% of the total European production. The generation rate of waste mushroom spent compost (MSC) amounts to 5 kg per 1 kg of mushrooms produced. We proposed the MSC treatment via torrefaction for the production of solid fuel—biocoal. In this research, we examined the MSC torrefaction kinetics using thermogravimetric analyses (TGA) and we tested the influence of torrefaction temperature within the range from 200 to 300 °C and treatment time lasting from 20 to 60 min on the resulting biocoal’s (fuel) properties. The estimated value of the torrefaction activation energy of MSC was 22.3 kJ mol−1. The highest calorific value = 17.9 MJ kg−1 d.m. was found for 280 °C (60 min torrefaction time). A significant (p \u3c 0.05) influence of torrefaction temperature on HHV increase within the same group of torrefaction duration, i.e., 20, 40, or 60 min, was observed. The torrefaction duration significantly (p \u3c 0.05) increased the HHV for 220 °C and decreased HHV for 300 °C. The highest mass yield (98.5%) was found for 220 °C (60 min), while the highest energy yield was found for 280 °C (60 min). In addition, estimations of the biocoal recirculation rate to maintain the heat self-sufficiency of MSC torrefaction were made. The net quantity of biocoal (torrefied MSC; 65.3% moisture content) and the 280 °C (60 min) torrefaction variant was used. The initial mass and energy balance showed that MSC torrefaction might be feasible and self-sufficient for heat when ~43.6% of produced biocoal is recirculated to supply the heat for torrefaction. Thus, we have shown a concept for an alternative utilization of abundant biowaste (MSC). This research provides a basis for alternative use of an abundant biowaste and can help charting improved, sustainable mushroom production

    The Proof-of-the-Concept of Application of Pelletization for Mitigation of Volatile Organic Compounds Emissions from Carbonized Refuse-Derived Fuel

    Get PDF
    Waste can be effectively reused through the production of carbonized refuse-derived fuel (CRDF) that enables further energy recovery. Developing cleaner production of CRDF requires consideration of practical issues of storage and handling. Thus, it needs to be ensured that CRDF does not pose an excessive risk to humans and the ecosystem. Very few studies indicate a wide variety of volatile organic compounds (VOCs) are present in CRDF, some of which are toxic. During handling, storage, transportation, and use of VOC-rich CRDF, workers and end-users could be exposed to emissions that could pose a health and safety hazard. Our recent study shows that CRDF densification via pelletization can increase the efficiency of storage and transportation. Thus, the following research question was identified: can pelletization mitigate VOCs emissions from CRDF during storage? Preliminary research aiming at the determination of the influence of CRDF pelletization on VOCs emission during storage was completed to address this question. The VOCs emissions from two types of CRDF: ground (loose, torrefied refuse-derived fuel (RDF)) and pelletized, were measured. Pelletization reduced the VOCs emissions potential during the four-day storage by ~86%, in comparison with ground CRDF. Mitigation of VOCs emissions from densified CRDF is feasible, and research is warranted to understand the influence of structural modification on VOCs emission kinetics, and possibilities of scaling up this solution into the practice of cleaner storage and transportation of CRDF

    Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry

    Get PDF
    In this work, for the first time, the volatile organic compound (VOC) emissions from carbonized refuse-derived fuel (CRDF) were quantified on a laboratory scale. The analyzed CRDF was generated from the torrefaction of municipal waste. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was used to identify 84 VOCs, including many that are toxic, e.g., derivatives of benzene or toluene. The highest emissions were measured for nonanal, octanal, and heptanal. The top 10 most emitted VOCs contributed to almost 65% of the total emissions. The VOC mixture emitted from torrefied CRDF differed from that emitted by other types of pyrolyzed biochars, produced from different types of feedstock, and under different pyrolysis conditions. SPME was a useful technology for surveying VOC emissions. Results provide an initial database of the types and relative quantities of VOCs emitted from CRDF. This data is needed for further development of CRDF technology and comprehensive assessment of environmental impact and practical storage, transport, and potential adoption of CRDF as means of energy and resource recovery from municipal waste

    Fuel Properties of Torrefied Biomass from Pruning of Oxytree

    Get PDF
    The very fast growing Oxytree (PaulowniaClonin Vitro 112) is marketed as a promising new energy crop. The tree has characteristically large leaves, thrives in warmer climates, and requires initial pruning for enhanced biomass production in later years. We explored valorizing the waste biomass of initial (first year) pruning via thermal treatment. Specifically, we used torrefaction (‘roasting’) to produce biochar with improved fuel properties. Here for the first time, we examined and summarized the fuel properties data of raw biomass of Oxytree pruning and biochars generated via torrefaction. The effects of torrefaction temperature (200~300 °C), process time (20~60 min), soil type, and agro-technical cultivation practices (geotextile and drip irrigation) on fuel properties of the resulting biochars were summarized. The dataset contains results of thermogravimetric analysis (TGA) as well as proximate and ultimate analyses of Oxytree biomass and generated biochars. The presented data are useful in determining Oxytree torrefaction reaction kinetics and further techno-economical modeling of the feasibility of Oxytree valorization via torrefaction. Oxytree torrefaction could be exploited as part of valorization resulting from a synergy between a high yield crop with the efficient production of high-quality renewable fuel

    The Spatial and Temporal Distribution of Process Gases within the Biowaste Compost

    Get PDF
    Composting is generally accepted as the sustainable recycling of biowaste into a useful and beneficial product for soil. However, composting processes can produce gases that are considered air pollutants. In this dataset, we summarized the spatial and temporal distribution of process gases (including rarely reported carbon monoxide, CO) generated inside full-scale composting piles. In total 1375 cross-sections were made and presented in 230 figures. The research aimed to investigate the phenomenon of gas evolution during the composting of biowaste depending on the pile turning regime (no turning, turning once a week, and turning twice a week) and pile location (outdoors, and indoors in a composting hall). The analyzed biowaste (a mixture of tree leaves and branches, grass clippings, and sewage sludge) were composted in six piles with passive aeration including additional turning at a municipal composting plant. The chemical composition and temperature of process gases within each pile were analyzed weekly for ~49–56 days. The variations in the degree of pile aeration (O2content), temperature, and the spatial distribution of CO, CO2 and NO concentration during the subsequent measurement cycles were summarized and visualized. The lowest O2 concentrations were associated with the central (core) part of the pile. Similarly, an increase in CO content in the pile core sections was found, which may indicate that CO is oxidized in the upper layer of composting piles. Higher CO and CO2 concentrations and temperature were also observed in the summer season, especially on the south side of piles located outdoors. The most varied results were for the NO concentrations that occurred in all conditions. The dataset was used by the composting plant operator for more sustainable management. Specifically, the dataset allowed us to make recommendations to minimize the environmental impact of composting operations and to lower the risk of worker exposure to CO. The new procedure is as follows: turning of biowaste twice a week for the first two weeks, followed by turning once a week for the next two weeks. Turning is not necessary after four weeks of the process. The recommended surface-to-volume ratio of a compost pile should not exceed 2.5. Compost piles should be constructed with a surface-to-volume ratio of less than 2 in autumn and early spring when low ambient temperatures are common

    Analysis of the Spatial and Temporal Distribution of Process Gases within Municipal Biowaste Compost

    Get PDF
    Composting processes reduce the weight and volume of biowaste and produce products that can be used in agriculture (e.g., as fertilizer). Despite the benefits of composting, there are also problems such as odors and the emission of pollutants into the atmosphere. This research aimed to investigate the phenomenon of process gas (CO, CO2, NO, O2) evolution within a large-scale municipal composter. The effects of turning frequency and pile location (outdoor vs. indoors) on process gas and temperature spatial and temporal evolution were studied in six piles (37‒81 tons of initial weight) over a six-month period. The biowaste consisted of green waste and municipal sewage sludge. The chemical composition and temperature of process gases within four cross sections with seven sampling locations were analyzed weekly for ~7–8 weeks (a total of 1375 cross sections). The aeration degree, temperature, CO, CO2, and NO concentration and their spatial and temporal distribution were analyzed. Final weight varied from 66% reduction to 7% weight gain. Only 8.2% of locations developed the desired chimney effect (utilizing natural buoyancy to facilitate passive aeration). Only 31.1% of locations reached thermophilic conditions (necessary to inactivate pathogens). Lower O2 levels corresponded with elevated CO2 concentrations. CO production increased in the initial composting phase. Winter piles were characterized by the lowest CO content. The most varied was the NO distribution in all conditions. The O2 concentration was lowest in the central part of the pile, and aeration conditions were good regardless of the technological regime used. Turning once a week was sufficient overall. Based on the results, the most favorable recommended procedure is turning twice a week for the first two weeks, followed by weekly turning for the next two weeks. After that, turning can be stopped unless additional removal of moisture is needed. In this case, weekly turning should continue until the process is completed. The size of the pile should follow the surface-to-volume ratio: \u3c2.5 and \u3c2 for cooler ambient conditions

    The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain

    Get PDF
    Biochar (BC) addition is a novel and promising method for biogas yield increase. Brewer’s spent grain (BSG) is an abundant organic waste with a large potential for biogas production. In this research, for the first time, we test the feasibility of increasing biogas yield and rate from BSG digestion by adding BC, which was produced from BSG via torrefaction (low-temperature pyrolysis). Furthermore, we explore the digestion of BSG with the presence BCs produced from BSG via torrefaction (low-temperature pyrolysis). The proposed approach creates two alternative waste-to-energy and waste-to-carbon type utilization pathways for BSG: (1) digestion of BSG waste to produce biogas and (2) torrefaction of BSG to produce BC used for digestion. Torrefaction extended the short utility lifetime of BSG waste turned into BC. BSG was digested in the presence of BC with BC to BSG + BC weight ratio from 0 to 50%. The study was conducted during 21 days under mesophilic conditions in n = 3 trials. The content of dry mass 17.6% in all variants was constant. The kinetics results for pure BSG (0% BC) were: reaction rate constant (k) 1.535 d−1, maximum production of biogas (B0) 92.3 dm3∙kg−1d.o.m. (d.o.m. = dry organic matter), and biogas production rate (r), 103.1 dm3∙kg−1d.o.m.∙d−1. his preliminary research showed that the highest (p\u3c 0.05) r,227 dm3∙kg−1d.o.m.∙d−1 was due to the 5% BC addition. This production rate was significantly higher (p\u3c 0.05) compared with all other treatments (0, 1, 3, 8, 10, 20, 30, and 50% BC dose). Due to the high variability observed between replicates, no significant differences could be detected between all the assays amended with BC and the variant 0% BC. However, a significant decrease of B0 from 85.1 to 61.0 dm3∙kg−1d.o.m. in variants with the high biochar addition (20–50% BC) was observed in relation to 5% BC (122 dm3∙kg−1d.o.m.), suggesting that BC overdose inhibits biogas production from the BSG + BC mixture. The reaction rate constant (k) was not improved by BC, and the addition of 10% and 20% BC even decreased k relatively to the 0% variant. A significant decrease of k was also observed for the doses of 10%, 20%, and 30% when compared with the 5% BC (1.89 d−1) assays

    The Proof-of-Concept of Biochar Floating Cover Influence on Water pH

    Get PDF
    Studies have shown that biochar has the potential to remove organic and inorganic contaminants from wastewater. pH is known to have a crucial role in the transformation of pollutants. In this research, we explore the feasibility of using biochars properties to control the pH near the water–air interface, so the gaseous emissions from water (or wastewater) could be mitigated. This study aimed to test the effects of a thin layer biochar addition on the spatial and temporal variation of water pH. Two types of biochar and water were tested. Highly alkaline porous (HAP; pH 9.2) biochars made of corn stover and red oak (RO; pH 7.5) were applied surficially to tap (pH 9.5) and deionized water (DI) (pH 5.4). The spatial pH of solutions was measured every 1 mm of depth on days 0, 2, and 4 after biochar application. The results showed that HAP biochar increased the pH of both tap and DI water, while RO decreased tap water pH and increased DI water pH. On day 0, there was no effect on tap water pH, while a pH change in DI water was observed due to its lower buffer capacity. In addition, the pH (temporal) migration from topically applied biochar into an aqueous solution was visualized using a colorimetric pH indicator and corn starch to increase viscosity (to prevent biochars from sinking). The results prove that the surficial application of biochar to water was able to change both the pH near the water–air interface and the pH of the solution with time. The pH change was dependent on the biochar pH and water buffer capacity. These results warrant further research into the floatability of biochars and into designing biochars with specific pH, which could be a factor influencing gaseous emissions from liquids that are sensitive to pH
    • 

    corecore