88 research outputs found
Heavy Ions: Results from the Large Hadron Collider
On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided first
stable beams of heavy ions (Pb on Pb) at center-of-mass energy of 2.76
TeV/nucleon. The LHC worked exceedingly well during its one month of operation
with heavy ions, delivering about 10 microbarn-inverse of data, with peak
luminosity reaching to
towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded
their first heavy ion data, which were analyzed in a record time. The results
of the multiplicity, flow, fluctuations, and Bose-Einstein correlations
indicate that the fireball formed in nuclear collisions at the LHC is hotter,
lives longer, and expands to a larger size at freeze-out as compared to lower
energies. We give an overview of these as well as new results on quarkonia and
heavy flavour suppression, and jet energy loss.Comment: Proceedings of Lepton-Photon 2011 Conference, to be published in
Pramana, Journal of Physics. 15 page
Simulation of Light Antinucleus-Nucleus Interactions
Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and
anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some
cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To
support the experimental studies of the anti-nuclei a Monte Carlo simulation of
anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The
implementation combines practically all known theoretical approaches to the
problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure
Some Field Theoretic Issues Regarding the Chiral Magnetic Effect
In this paper, we shall address some field theoretic issues regarding the
chiral magnetic effect. The general structure of the magnetic current
consistent with the electromagnetic gauge invariance is obtained and the impact
of the infrared divergence is examined. Some subtleties on the relation between
the chiral magnetic effect and the axial anomaly are clarified through a
careful examination of the infrared limit of the relevant thermal diagrams.Comment: 19 pages, 4 figures in Latex. Typos fixed, version accepted to be
published in JHE
Holographic Anomalous Conductivities and the Chiral Magnetic Effect
We calculate anomaly induced conductivities from a holographic gauge theory
model using Kubo formulas, making a clear conceptual distinction between
thermodynamic state variables such as chemical potentials and external
background fields. This allows us to pinpoint ambiguities in previous
holographic calculations of the chiral magnetic conductivity. We also calculate
the corresponding anomalous current three-point functions in special kinematic
regimes. We compare the holographic results to weak coupling calculations using
both dimensional regularization and cutoff regularization. In order to
reproduce the weak coupling results it is necessary to allow for singular
holographic gauge field configurations when a chiral chemical potential is
introduced for a chiral charge defined through a gauge invariant but
non-conserved chiral density. We argue that this is appropriate for actually
addressing charge separation due to the chiral magnetic effect.Comment: 17 pages, 1 figure. v2: 18 pages, 1 figure, discussion clarified
throughout the text, references added, version accepted for publication in
JHE
Non-perturbative computation of double inclusive gluon production in the Glasma
The near-side ridge observed in A+A collisions at RHIC has been described as
arising from the radial flow of Glasma flux tubes formed at very early times in
the collisions. We investigate the viability of this scenario by performing a
non-perturbative numerical computation of double inclusive gluon production in
the Glasma. Our results support the conjecture that the range of transverse
color screening of correlations determining the size of the flux tubes is a
semi-hard scale, albeit with non-trivial structure. We discuss our results in
the context of ridge correlations in the RHIC heavy ion experiments.Comment: 25 pages, 11 figures, uses JHEP3.cls V2: small clarifications,
published in JHE
Colour-electric spectral function at next-to-leading order
The spectral function related to the correlator of two colour-electric fields
along a Polyakov loop determines the momentum diffusion coefficient of a heavy
quark near rest with respect to a heat bath. We compute this spectral function
at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The
high-frequency part of our result (omega >> T), which is shown to be
temperature-independent, is accurately determined thanks to asymptotic freedom;
the low-frequency part of our result (omega << T), in which Hard Thermal Loop
resummation is needed in order to cure infrared divergences, agrees with a
previously determined expression. Our result may help to calibrate the overall
normalization of a lattice-extracted spectral function in a perturbative
frequency domain T << omega << 1/a, paving the way for a non-perturbative
estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate
the colour-electric Euclidean correlator, which could be directly compared with
lattice simulations. As an aside we determine the Euclidean correlator in the
lattice strong-coupling expansion, showing that through a limiting procedure it
can in principle be defined also in the confined phase of pure Yang-Mills
theory, even if a practical measurement could be very noisy there.Comment: 38 page
The Sphaleron Rate in SU(N) Gauge Theory
The sphaleron rate is defined as the diffusion constant for topological
number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration
of axial light quark number in QCD and is of interest both in electroweak
baryogenesis and possibly in heavy ion collisions. We calculate the
weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most
sensible extrapolation towards intermediate coupling which we can. We also
study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
Interleaved Parton Showers and Tuning Prospects
General-purpose Monte Carlo event generators have become important tools in
particle physics, allowing the simulation of exclusive hadronic final states.
In this article we examine the Pythia 8 generator, in particular focusing on
its parton-shower algorithms. Some relevant new additions to the code are
introduced, that should allow for a better description of data. We also
implement and compare with 2 to 3 real-emission QCD matrix elements, to check
how well the shower algorithm fills the phase space away from the soft and
collinear regions. A tuning of the generator to Tevatron data is performed for
two PDF sets and the impact of first new LHC data is examined
Early-Time Energy Loss in a Strongly-Coupled SYM Plasma
We carry out an analytic study of the early-time motion of a quark in a
strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT
correspondence. Our approach extracts the first thermal effects as a small
perturbation of the known quark dynamics in vacuum, using a double expansion
that is valid for early times and for (moderately) ultrarelativistic quark
velocities. The quark is found to lose energy at a rate that differs
significantly from the previously derived stationary/late-time result: it
scales like T^4 instead of T^2, and is associated with a friction coefficient
that is not independent of the quark momentum. Under conditions representative
of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a
few times smaller than its late-time counterpart. Our analysis additionally
leads to thermally-corrected expressions for the intrinsic energy and momentum
of the quark, in which the previously discovered limiting velocity of the quark
is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications.
References added. Version to be published in JHE
- …