17 research outputs found

    Variable-focus liquid lens for miniature cameras

    No full text
    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centered lens with a high optical quality. The motion of the lens during a focusing action was studied by observation through the transparent tube wall. Finally, a miniature achromatic camera module was designed and constructed based on this adjustable lens, showing that it is excellently suited for use in portable application

    Chaos in a Single Mode Laser with Intracavity Parametric Amplification

    No full text

    Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm

    No full text
    We demonstrate a method to estimate the concentrations of water and lipid in scattering media such as biological tissues with diffuse optical spectra acquired over the range of 900 to 1600 nm. Estimations were performed by fitting the spectra to a model of light propagation in scattering media derived from diffusion theory. To validate the method, spectra were acquired from tissue phantoms consisting of lipid and water emulsions and swine tissues ex vivo with a two-fiber probe. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI:10.1117/1.3454392

    Variable-focus liquid lens for portable applications

    No full text
    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were studied, such as optical performance, electrical characteristics and dynamic behavior. We designed and constructed a miniature camera module based on this tunable lens and show that it is very well suited for use in portable applications

    Validation of Interventional Fiber Optic Spectroscopy With MR Spectroscopy, MAS-NMR Spectroscopy, High-Performance Thin-Layer Chromatography, and Histopathology for Accurate Hepatic Fat Quantification

    No full text
    Objectives: To validate near-infrared (NIR)-based optical spectroscopy measurements of hepatic fat content using a minimally invasive needle-like probe with integrated optical fibers, enabling real-time feedback during percutaneous interventions. The results were compared with magnetic resonance spectroscopy (MRS) as validation and with histopathology, being the clinical gold standard. Additionally, ex vivo magic angle spinning nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography were performed for comparison. Materials and Methods: Ten mice were used for the study, of which half received a regular chow diet and the other half received a high-fat diet to induce obesity and hepatosteatosis. The mice were imaged with a clinical 3-Tesla MR to select a region of interest within the right and left lobes of the liver, where MRS measurements were acquired in vivo. Subsequently, optical spectra were measured ex vivo at the surface of the liver at 6 different positions immediately after resection. Additionally Results: For both the mice groups, the estimated fat fractions by the various techniques were significantly similar (P = 0.072 and 0.627 for chow diet and high-fat diet group, respectively). The Pearson correlation value between NIR and the other techniques for fat determination showed the same strong linear correlation (P above 0.990; P < 0.001), whereas for histopathologic analyses, which is a rather qualitative measure, the Pearson correlation value was slightly lower (P = 0.925, P < 0.001). Conclusions: NIR spectroscopy measurements from a needle-like probe with integrated optical fibers for sensing at the tip of the needle can quickly and accurately determine hepatic fat content during an interventional procedure and might therefore be a promising novel diagnosing tool in the clinic
    corecore