42 research outputs found
Spontaneous adaptation explains why people act faster when being imitated
The human ability to perform joint actions is often attributed to high-level cognitive processes. For example, the finding that action leaders act faster when imitated by their partners has been interpreted as evidence for anticipation of the otherâs actions (Pfister, Dignath, Hommel, & Kunde, 2013). In two experiments, we showed that a low-level mechanism can account for this finding. Action leaders were faster when imitated than when counterimitated, but only if they could observe their partnerâs actions (Exp. 1). Crucially, when due to our manipulation the partnerâs imitative actions became slower than the counterimitative actions, leaders also became slower when they were imitated, and faster when counterimitated (Exp. 2). Our results suggest that spontaneous temporal adaptation is a key mechanism in joint action tasks. We argue for a reconsideration of other phenomena that have traditionally been attributed solely to high-level processes
COMP-Angiopoietin-1 Recovers Molecular Biomarkers of Neuropathy and Improves Vascularisation in Sciatic Nerve of ob/ob Mice
mice. mice displayed regeneration of small-diameter endoneural microvessels. Effects of COMP-Ang-1 corresponded to increased phosphorylation of Akt and p38 MAPK upon Tie-2 receptor. mice suggesting COMP-Ang-1 as novel treatment option to improve morphologic and protein expression changes associated with diabetic neuropathy