85 research outputs found

    Heart rate regulation during cycle-ergometer exercise via event-driven biofeedback

    Full text link
    © 2016, International Federation for Medical and Biological Engineering. This paper is devoted to the problem of regulating the heart rate response along a predetermined reference profile, for cycle-ergometer exercises designed for training or cardio-respiratory rehabilitation. The controller designed in this study is a non-conventional, non-model-based, proportional, integral and derivative (PID) controller. The PID controller commands can be transmitted as biofeedback auditory commands, which can be heard and interpreted by the exercising subject to increase or reduce exercise intensity. However, in such a case, for the purposes of effectively communicating to the exercising subject a change in the required exercise intensity, the timing of this feedback signal relative to the position of the pedals becomes critical. A feedback signal delivered when the pedals are not in a suitable position to efficiently exert force may be ineffective and this may, in turn, lead to the cognitive disengagement of the user from the feedback controller. This note examines a novel form of control system which has been expressly designed for this project. The system is called an “actuator-based event-driven control system”. The proposed control system was experimentally verified using 24 healthy male subjects who were randomly divided into two separate groups, along with cross-validation scheme. A statistical analysis was employed to test the generalisation of the PID tunes, derived based on the average transfer functions of the two groups, and it revealed that there were no significant differences between the mean values of root mean square of the tracking error of two groups (3.9 vs. 3.7 bpm, p= 0.65). Furthermore, the results of a second statistical hypothesis test showed that the proposed PID controller with novel synchronised biofeedback mechanism has better performance compared to a conventional PID controller with a fixed-rate biofeedback mechanism (Group 1: 3.9 vs. 5.0 bpm, Group 2: 3.7 vs. 4.4 bpm, p< 0.05)

    Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness

    Full text link
    In this study we aimed to establish the usefulness of the time constant of heart rate recovery (Tr) in the evaluation of cardiovascular fitness. 15 male subjects exercised on recumbent bicycle at three different workloads (75W, 100W 125W) where R-R intervals were monitored to determine Tr. In order to find the maximal oxygen uptake (V̇O2max) of each subject, oxygen consumption rate (V̇O2) was recorded throughout the treadmill exercise (10km/h). Based on V̇O2max' we classified the subjects into two groups: the "fit" group and the "unfit" group. We found a significant difference in Tr between these two groups only existed when the workload was 75W (p ≤ 0.01) and only at this workload did the R-R intervals achieve stability during the 5 minutes of exercise. Furthermore, we found the cut-off value for predicting cardiovascular fitness at this workload was 55 seconds, with an associated sensitivity of 85.7% and specificity of 87.5%. © 2006 IEEE

    Oxygen uptake estimation in humans during exercise using a Hammerstein model

    Full text link
    This paper aims to establish a block-structured model to predict oxygen uptake in humans during moderate treadmill exercises. To model the steady state relationship between oxygen uptake (oxygen consumption) and walking speed, six healthy male subjects walked on a motor driven treadmill with constant speed from 2 to 7 km/h. The averaged oxygen uptake at steady state (VO 2) was measured by a mixing chamber based gas analysis and ventilation measurement system (AEI Moxus Metabolic Cart). Based on these reliable date, a nonlinear steady state relationship was successfully established using Support Vector Regression methods. In order to capture the dynamics of oxygen uptake, the treadmill velocity was modulated using a Pseudo Random Binary Signal (PRBS) input. Breath by breath analysis of all subjects was performed. An ARX model was developed to accurately reproduce the measured oxygen uptake dynamics within the aerobic range. Finally, a Hammerstein model was developed, which may be useful for implementing a control system for the regulation of oxygen uptake during treadmill exercises. © 2007 Biomedical Engineering Society

    Designing adaptive integral sliding mode control for heart rate regulation during cycle-ergometer exercise using bio-feedback

    Full text link
    © 2015 IEEE. This paper considers our developed control system which aims to regulate the exercising subjects' heart rate (HR) to a predefined profile. The controller would be an adaptive integral sliding mode controller. Here it is assumed that the controller commands are interpreted as biofeedback auditory commands. These commands can be heard and implemented by the exercising subject as a part of the control-loop. However, transmitting a feedback signal while the pedals are not in the appropriate position to efficiently exert force may lead to a cognitive disengagement of the user from the feedback controller. To address this problem this paper will employ a different form of control system regarding as 'actuator-based event-driven control system'. This paper will claim that the developed event-driven controller makes it possible to effectively regulate HR to a predetermined HR profile

    Analysis of orientation error of triaxial accelerometers on the assessment of energy expenditure

    Full text link
    This paper investigates the effects of orientation error in the positioning of triaxial accelerometers on the assessment of energy expenditure. Four subjects walked on a treadmill at varying velocities ranging from 4km.h -1 to 5km.h-1. During each test, a triaxial accelerometer attached to the lower back at arbitrary orientations to record body accelerations. Energy expenditure was estimated by the sum of the integrals of the absolute value of accelerometer output from all the three measurement directions. Based on theoretical analysis and experimental observations, it is concluded that small orientation errors ( < 3° ) have no distinguishable effects on the estimation of energy expenditure. We propose an efficient method to compensate for larger orientation errors. The experimental results verified the effectiveness of this proposed compensation method. ©2005 IEEE

    Heart rate control during treadmill exercise

    Full text link
    A computer-controlled treadmill and related data collection and processing systems have been developed for the control of heart rate during treadmill exercise. Minimizing deviations of heart rate from a preset profile is achieved by controlling the speed and/or the gradient of the treadmill. A simple and practical heart rate measurement algorithm has been developed to robustly measure the variations of heart rate. Both conventional Proportional-Integral- Derivative (PID) control and fuzzy Proportional-Integral (PI) control approaches have been employed for the controller design. The fuzzy Proportional-Integral algorithm achieved better heart rate tracking performance. Finally, a heart rate based exercising protocol was successfully implemented on the newly designed exercise system. © 2005 IEEE

    Estimation of oxygen consumption for moderate exercises by using a hammerstein model

    Full text link
    This paper aims to establish block-structured nonlinear model (Hammerstein model) to predict oxygen uptake during moderate treadmill exercises. In order to model the steady state relationship between oxygen uptake (oxygen consumption) and walking speed, six healthy male subjects walked on a motor driven treadmill at six different speed (2,3,4,5,6, and 7 km/h). The averaged oxygen uptake of exercisers at steady state was measured by a mixing chamber based gas analyzer(AEI Moxus Metabolic Cart). Based on these reliable experiment data, a nonlinear static function was obtained by using Support Vector Regression. In order to capture the dynamics of oxygen uptake, a suitable Pseudo Random Binary Signal (PRBS) input was designed and implemented on a computer controlled treadmill. Breath by breath analysis of all exercisers' dynamic responses (PRBS responses) to treadmill walking was performed. A useful ARX model is identified to justify the measured oxygen uptake dynamics within the aerobic range. Finally, a Hammerstein is achieved, which is useful for the control system design of oxygen uptake regulation during treadmill exercises. © 2006 IEEE

    Heart rate regulation during cycle-ergometer exercise via bio-feedback

    Full text link
    © 2015 IEEE. This paper explains our developed control system which regulates the heart rate (HR) to track a desired trajectory. The controller is indeed a non-conventional non-model-based proportional, integral and derivative (PID) controller. The controller commands are interpreted as biofeedback auditory commands. These commands can be heard and implemented by the exercising subject as a part of the control-loop. However, transmitting a feedback signal while the pedals are not in the appropriate position to efficiently exert force may lead to a cognitive disengagement of the user from the feedback controller. This note explains a novel form of control system regarding as 'actuator-based event-driven control system', designed specifically for the purpose of this project. We conclude that the developed event-driven controller makes it possible to precisely regulate HR to a predetermined HR profile

    Modeling of a gas concentration measurement system

    Full text link
    Energy expenditure can be calculated via measurement of oxygen consumption and carbon dioxide production. Precise measurement of expired gas concentrations and volume is required for this determination. For a given gas concentration measurement system, the establishment of a model is a good way to effectively use the equipments and achieve more accurate energy expenditure calculations. This paper proposes a simple but effective approach for the modeling of a gas concentration measurement system. © 2005 IEEE

    Effect of seasonal variation on clinical outcome in patients with chronic conditions: Analysis of the commonwealth scientific and industrial research organization (csiro) national telehealth trial

    Full text link
    ©Ahmadreza Argha, Andrey Savkin, Siaw-Teng Liaw, Branko George Celler. Background: Seasonal variation has an impact on the hospitalization rate of patients with a range of cardiovascular diseases, including myocardial infarction and angina. This paper presents findings on the influence of seasonal variation on the results of a recently completed national trial of home telemonitoring of patients with chronic conditions, carried out at five locations along the east coast of Australia. Objective: The aim is to evaluate the effect of the seasonal timing of hospital admission and length of stay on clinical outcome of a home telemonitoring trial involving patients (age: mean 72.2, SD 9.4 years) with chronic conditions (chronic obstructive pulmonary disease coronary artery disease, hypertensive diseases, congestive heart failure, diabetes, or asthma) and to explore methods of minimizing the influence of seasonal variations in the analysis of the effect of at-home telemonitoring on the number of hospital admissions and length of stay (LOS). Methods: Patients were selected from a hospital list of eligible patients living with a range of chronic conditions. Each test patient was case matched with at least one control patient. A total of 114 test patients and 173 control patients were available in this trial. However, of the 287 patients, we only considered patients who had one or more admissions in the years from 2010 to 2012. Three different groups were analyzed separately because of substantially different climates: (1) Queensland, (2) Australian Capital Territory and Victoria, and (3) Tasmania. Time series data were analyzed using linear regression for a period of 3 years before the intervention to obtain an average seasonal variation pattern. A novel method that can reduce the impact of seasonal variation on the rate of hospitalization and LOS was used in the analysis of the outcome variables of the at-home telemonitoring trial. Results: Test patients were monitored for a mean 481 (SD 77) days with 87% (53/61) of patients monitored for more than 12 months. Trends in seasonal variations were obtained from 3 years’ of hospitalization data before intervention for the Queensland, Tasmania, and Australian Capital Territory and Victoria subgroups, respectively. The maximum deviation from baseline trends for LOS was 101.7% (SD 42.2%), 60.6% (SD 36.4%), and 158.3% (SD 68.1%). However, by synchronizing outcomes to the start date of intervention, the impact of seasonal variations was minimized to a maximum of 9.5% (SD 7.7%), thus improving the accuracy of the clinical outcomes reported. Conclusions: Seasonal variations have a significant effect on the rate of hospital admission and LOS in patients with chronic conditions. However, the impact of seasonal variation on clinical outcomes (rate of admissions, number of hospital admissions, and LOS) of at-home telemonitoring can be attenuated by synchronizing the analysis of outcomes to the commencement dates for the telemonitoring of vital signs. Trial Registration: Australian New Zealand Clinical Trial Registry ACTRN12613000635763; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364030&isReview=true (Archived by WebCite at http://www.webcitation.org/ 6xLPv9QDb
    corecore