167 research outputs found
Lectures on Linear Stability of Rotating Black Holes
These lecture notes are concerned with linear stability of the non-extreme
Kerr geometry under perturbations of general spin. After a brief review of the
Kerr black hole and its symmetries, we describe these symmetries by Killing
fields and work out the connection to conservation laws. The Penrose process
and superradiance effects are discussed. Decay results on the long-time
behavior of Dirac waves are outlined. It is explained schematically how the
Maxwell equations and the equations for linearized gravitational waves can be
decoupled to obtain the Teukolsky equation. It is shown how the Teukolsky
equation can be fully separated to a system of coupled ordinary differential
equations. Linear stability of the non-extreme Kerr black hole is stated as a
pointwise decay result for solutions of the Cauchy problem for the Teukolsky
equation. The stability proof is outlined, with an emphasis on the underlying
ideas and methods.Comment: 25 pages, LaTeX, 3 figures, lectures given at first DOMOSCHOOL in
July 2018, minor improvements (published version
Stability study of a model for the Klein-Gordon equation in Kerr spacetime
The current early stage in the investigation of the stability of the Kerr
metric is characterized by the study of appropriate model problems.
Particularly interesting is the problem of the stability of the solutions of
the Klein-Gordon equation, describing the propagation of a scalar field of mass
in the background of a rotating black hole. Rigorous results proof the
stability of the reduced, by separation in the azimuth angle in Boyer-Lindquist
coordinates, field for sufficiently large masses. Some, but not all, numerical
investigations find instability of the reduced field for rotational parameters
extremely close to 1. Among others, the paper derives a model problem for
the equation which supports the instability of the field down to .Comment: Updated version, after minor change
Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence
We investigate linear perturbations of spin-s fields in the Kerr-AdS black
hole and in its near-horizon geometry (NHEK-AdS), using the Teukolsky master
equation and the Hertz potential. In the NHEK-AdS geometry we solve the
associated angular equation numerically and the radial equation exactly. Having
these explicit solutions at hand, we search for linear mode instabilities. We
do not find any (non-)axisymmetric instabilities with outgoing boundary
conditions. This is in agreement with a recent conjecture relating the
linearized stability properties of the full geometry with those of its
near-horizon geometry. Moreover, we find that the asymptotic behaviour of the
metric perturbations in NHEK-AdS violates the fall-off conditions imposed in
the formulation of the Kerr/CFT correspondence (the only exception being the
axisymmetric sector of perturbations).Comment: 26 pages. 4 figures. v2: references added. matches published versio
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
Ultraspinning instability: the missing link
We study linearized perturbations of Myers-Perry black holes in d=7, with two
of the three angular momenta set to be equal, and show that instabilities
always appear before extremality. Analogous results are expected for all higher
odd d. We determine numerically the stationary perturbations that mark the
onset of instability for the modes that preserve the isometries of the
background. The onset is continuously connected between the previously studied
sectors of solutions with a single angular momentum and solutions with all
angular momenta equal. This shows that the near-extremality instabilities are
of the same nature as the ultraspinning instability of d>5 singly-spinning
solutions, for which the angular momentum is unbounded. Our results raise the
question of whether there are any extremal Myers-Perry black holes which are
stable in d>5.Comment: 19 pages. 1 figur
An instability of higher-dimensional rotating black holes
We present the first example of a linearized gravitational instability of an
asymptotically flat vacuum black hole. We study perturbations of a Myers-Perry
black hole with equal angular momenta in an odd number of dimensions. We find
no evidence of any instability in five or seven dimensions, but in nine
dimensions, for sufficiently rapid rotation, we find perturbations that grow
exponentially in time. The onset of instability is associated with the
appearance of time-independent perturbations which generically break all but
one of the rotational symmetries. This is interpreted as evidence for the
existence of a new 70-parameter family of black hole solutions with only a
single rotational symmetry. We also present results for the Gregory-Laflamme
instability of rotating black strings, demonstrating that rotation makes black
strings more unstable.Comment: 38 pages, 13 figure
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
Computed tomography for the diagnosis of lumbar spinal pathology in adult patients with low back pain or sciatica: a diagnostic systematic review
Aim: In low back pain if serious pathology is suspected diagnostic imaging could be performed. One of the imaging techniques available for this purpose is computed tomography (
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
- …