2,338 research outputs found
Vacuum polarization by topological defects in de Sitter spacetime
In this paper we investigate the vacuum polarization effects associated with
a massive quantum scalar field in de Sitter spacetime in the presence of
gravitational topological defects. Specifically we calculate the vacuum
expectation value of the field square, . Because this investigation
has been developed in a pure de Sitter space, here we are mainly interested on
the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and
Quantum Gravity (MCCQG
Divergência genética multivariada entre genótipos de mandioca coletados em área indígena do Amapá.
O trabalho teve como objetivo estimar a diversidade genetica multivariada entre 31 genotipos de mandioca coletados em área indigena do município de Oiapoque-AP
Vacuum Polarization in the Spacetime of a Scalar-Tensor Cosmic String
We study the vacuum polarization effect in the spacetime generated by a
magnetic flux cosmic string in the framework of a scalar-tensor gravity. The
vacuum expectation values of the energy-momentum tensor of a conformally
coupled scalar field are calculated. The dilaton's contribution to the vacuum
polarization effect is shown explicitly.Comment: 11 pages, LATEX file, 2 eps figure
Nonrelativistic Quantum Analysis of the Charged Particle-Dyon System on a Conical Spacetime
In this paper we develop the nonrelativistic quantum analysis of the charged
particle-dyon system in the spacetime produced by an idealized cosmic string.
In order to do that, we assume that the dyon is superposed to the cosmic
string. Considering this peculiar configuration {\it conical} monopole
harmonics are constructed, which are a generalizations of previous monopole
harmonics obtained by Wu and Yang(1976 {\it Nucl. Phys. B} {\bf 107} 365)
defined on a conical three-geometry. Bound and scattering wave functions are
explicitly derived. As to bound states, we present the energy spectrum of the
system, and analyze how the presence of the topological defect modifies
obtained result. We also analyze this system admitting the presence of an extra
isotropic harmonic potential acting on the particle. We show that the presence
of this potential produces significant changes in the energy spectrum of the
system.Comment: Paper accepted for publication in Classical and Quantum Gravit
Self-similar magnetoresistance of Fibonacci ultrathin magnetic films
We study numerically the magnetic properties (magnetization and
magnetoresistance) of ultra-thin magnetic films (Fe/Cr) grown following the
Fibonacci sequence. We use a phenomenological model which includes Zeeman,
cubic anisotropy, bilinear and biquadratic exchange energies. Our physical
parameters are based on experimental data recently reported, which contain
biquadratic exchange coupling with magnitude comparable to the bilinear
exchange coupling. When biquadratic exchange coupling is sufficiently large a
striking self-similar pattern emerges.Comment: 5 pages, 5 EPS figures, REVTeX, accepted for publication in Phys.
Rev.
Some boundary effects in quantum field theory
We have constructed a quantum field theory in a finite box, with periodic
boundary conditions, using the hypothesis that particles living in a finite box
are created and/or annihilated by the creation and/or annihilation operators,
respectively, of a quantum harmonic oscillator on a circle. An expression for
the effective coupling constant is obtained showing explicitly its dependence
on the dimension of the box.Comment: 12 pages, Late
Self-Forces on Electric and Magnetic Linear Sources in the Space-Time of a Cosmic String
In this paper we calculate the magnetic and electric self-forces, induced by
the conical structure of a cosmic string space-time, on a long straight wire
which presents either a constant current or a linear charge density. We also
show how these self-forces are related by a Lorentz tranformation and, in this
way, explain what two different inertial observers detect in their respective
frames.Comment: 10 pages, LaTeX, to be published in Phys. Rev. D
Spherically symmetric vacuum solutions of modified gravity theory in higher dimensions
In this paper we investigate spherically symmetric vacuum solutions of
gravity in a higher dimensional spacetime. With this objective we construct a
system of non-linear differential equations, whose solutions depend on the
explicit form assumed for the function . We explicit
show that for specific classes of this function exact solutions from the field
equations are obtained; also we find approximated results for the metric tensor
for more general cases admitting close to the unity.Comment: 14 pages, no figure. New version accepted for publication in EPJ
On Matrix Superpotential and Three-Component Normal Modes
We consider the supersymmetric quantum mechanics (SUSY QM) with three-
component normal modes for the Bogomol'nyi-Prasad-Sommerfield (BPS) states. An
explicit form of the SUSY QM matrix superpotential is presented and the
corresponding three-component bosonic zero-mode eigenfunction is investigated.Comment: 17 pages, no figure. Paper accepted for publication in Journal of
Physics A: Mathematical and Theoretica
- …