487 research outputs found

    Observer and Particle Transformations and Newton's Laws

    Full text link
    A frequently confused point in studies of symmetry violation is the distinction between observer and particle transformations. In this work, we consider a model in which a coefficient in the Standard-Model Extension leads to violations of rotation invariance in Newton's second law. The model highlights the distinction between observer and particle transformations.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 201

    Antimatter, Lorentz Symmetry, and Gravity

    Full text link
    A brief introduction to the Standard-Model Extension (SME) approach to testing CPT and Lorentz symmetry is provided. Recent proposals for tests with antimatter are summarized, including gravitational and spectroscopic tests.Comment: Presented at the 12th International Conference on Low Energy Antiproton Physics, Kanazawa Japan, March 6-11, 2016, Accepted for publication in JPS Conference Proceeding

    Reheating of the Universe and Population III

    Get PDF
    We note that current observational evidence strongly favors a conventional recombination of ionized matter subsequent to redshift z=1200, followed by reionization prior to redshift z=5 and compute how this would have occurred in a standard scenario for the growth of structure. Extending prior semi-analytic work, we show by direct, high-resolution numerical simulations (of a COBE normalized CDM+Lambda model) that reheating, will occur in the interval 15>z>7, followed by reionization and accompanied by a significant increase in the Jeans mass. However, the evolution of the Jeans mass does not significantly affect star formation in dense, self-shielded clumps of gas, which are detached from the thermal evolution of the rest of the universe. On average, the growth of the Jeans mass tracks the growth of the nonlinear mass scale, a result we suspect is due to nonlinear feedback effects. Cooling on molecular hydrogen leads to a burst of star formation prior to reheating which produces Population III stars with Omega_* reaching 10^{-5.5} and Z/Z_sun reaching 10^{-3.7} by z=14. Star formation subsequently slows down as molecular hydrogen is depleted by photo-destruction and the rise of the temperature. At later times, z<10, when the characteristic virial temperature of gas clumps reach 10,000 degrees, star formation increases again as hydrogen line cooling become efficient. Objects containing Pop III stars accrete mass with time and, as soon as they reach 10,000 K virial temperature, they engage in renewed star formation and turn into normal Pop II objects having an old Pop III metal poor component.Comment: six postscript figures included, submitted to ApJ

    Dependence of the Inner DM Profile on the Halo Mass

    Get PDF
    I compare the density profile of dark matter (DM) halos in cold dark matter (CDM) N-body simulations with 1 Mpc, 32 Mpc, 256 Mpc and 1024 Mpc box sizes. In dimensionless units the simulations differ only for the initial power spectrum of density perturbations. I compare the profiles when the most massive halos are composed of about 10^5 DM particles. The DM density profiles of the halos in the 1 Mpc box show systematically shallower cores with respect to the corresponding halos in the 32 Mpc simulation that have masses, M_{dm}, typical of the Milky Way and are fitted by a NFW profile. The DM density profiles of the halos in the 256 Mpc box are consistent with having steeper cores than the corresponding halos in the 32 Mpc simulation, but higher mass resolution simulations are needed to strengthen this result. Combined, these results indicate that the density profile of DM halos is not universal, presenting shallower cores in dwarf galaxies and steeper cores in clusters. Physically the result sustains the hypothesis that the mass function of the accreting satellites determines the inner slope of the DM profile. In comoving coordinates, r, the profile \rho_{dm} \propto 1/(X^\alpha(1+X)^{3-\alpha}), with X=c_\Delta r/r_\Delta, r_\Delta is the virial radius and \alpha =\alpha(M_{dm}), provides a good fit to all the DM halos from dwarf galaxies to clusters at any redshift with the same concentration parameter c_\Delta ~ 7. The slope, \gamma, of the outer parts of the halo appears to depend on the acceleration of the universe: when the scale parameter is a=(1+z)^{-1} < 1, the slope is \gamma ~ 3 as in the NFW profile, but \gamma ~ 4 at a > 1 when \Omega_\Lambda ~ 1 and the universe is inflating.[abridged]Comment: Accepted for publication in MNRAS. 13 pages, including 11 figures and 2 tables. The revised version has an additional discussion section and work on the velocity dispersion anisotrop

    The Omega Dependence of the Evolution of xi(r)

    Full text link
    The evolution of the two-point correlation function, xi(r,z), and the pairwise velocity dispersion, sigma(r,z), for both the matter and halo population, in three different cosmological models: (Omega_M,Omega_Lambda)=(1,0), (0.2,0) and (0.2,0.8) are described. If the evolution of xi is parameterized by xi(r,z)=(1+z)^{-(3+eps)}xi(r,0), where xi(r,0)=(r/r_0)^{-gamma}, then eps(mass) ranges from 1.04 +/- 0.09 for (1,0) to 0.18 +/- 0.12 for (0.2,0), as measured by the evolution of at 1 Mpc (from z ~ 5 to the present epoch). For halos, eps depends on their mean overdensity. Halos with a mean overdensity of about 2000 were used to compute the halo two-point correlation function tested with two different group finding algorithms: the friends of friends and the spherical overdensity algorithm. It is certainly believed that the rate of growth of this xihh will give a good estimate of the evolution of the galaxy two-point correlation function, at least from z ~ 1 to the present epoch. The values we get for eps(halos) range from 1.54 for (1,0) to -0.36 for (0.2,0), as measured by the evolution of xi(halos) from z ~ 1.0 to the present epoch. These values could be used to constrain the cosmological scenario. The evolution of the pairwise velocity dispersion for the mass and halo distribution is measured and compared with the evolution predicted by the Cosmic Virial Theorem (CVT). According to the CVT, sigma(r,z)^2 ~ G Q rho(z) r^2 xi(r,z) or sigma proportional to (1+z)^{-eps/2}. The values of eps measured from our simulated velocities differ from those given by the evolution of xi and the CVT, keeping gamma and Q constant: eps(CVT) = 1.78 +/- 0.13 for (1,0) or 1.40 +/- 0.28 for (0.2,0).Comment: Accepted for publication in the ApJ. Also available at http://manaslu.astro.utoronto.ca/~carlberg/cnoc/xiev/xi_evo.ps.g

    POTENT Reconstruction from Mark III Velocities

    Full text link
    We present an improved POTENT method for reconstructing the velocity and mass density fields from radial peculiar velocities, test it with mock catalogs, and apply it to the Mark III Catalog. Method improvments: (a) inhomogeneous Malmquist bias is reduced by grouping and corrected in forward or inverse analyses of inferred distances, (b) the smoothing into a radial velocity field is optimized to reduce window and sampling biases, (c) the density is derived from the velocity using an improved nonlinear approximation, and (d) the computational errors are made negligible. The method is tested and optimized using mock catalogs based on an N-body simulation that mimics our cosmological neighborhood, and the remaining errors are evaluated quantitatively. The Mark III catalog, with ~3300 grouped galaxies, allows a reliable reconstruction with fixed Gaussian smoothing of 10-12 Mpc/h out to ~60 Mpc/h. We present maps of the 3D velocity and mass-density fields and the corresponding errors. The typical systematic and random errors in the density fluctuations inside 40 Mpc/h are \pm 0.13 and \pm 0.18. The recovered mass distribution resembles in its gross features the galaxy distribution in redshift surveys and the mass distribution in a similar POTENT analysis of a complementary velocity catalog (SFI), including the Great Attractor, Perseus-Pisces, and the void in between. The reconstruction inside ~40 Mpc/h is not affected much by a revised calibration of the distance indicators (VM2, tailored to match the velocities from the IRAS 1.2Jy redshift survey). The bulk velocity within the sphere of radius 50 Mpc/h about the Local Group is V_50=370 \pm 110 km/s (including systematic errors), and is shown to be mostly generated by external mass fluctuations. With the VM2 calibration, V_50 is reduced to 305 \pm 110 km/s.Comment: 60 pages, LaTeX, 3 tables and 27 figures incorporated (may print the most crucial figures only, by commenting out one line in the LaTex source

    Newtonian versus relativistic nonlinear cosmology

    Full text link
    Both for the background world model and its linear perturbations Newtonian cosmology coincides with the zero-pressure limits of relativistic cosmology. However, such successes in Newtonian cosmology are not purely based on Newton's gravity, but are rather guided ones by previously known results in Einstein's theory. The action-at-a-distance nature of Newton's gravity requires further verification from Einstein's theory for its use in the large-scale nonlinear regimes. We study the domain of validity of the Newtonian cosmology by investigating weakly nonlinear regimes in relativistic cosmology assuming a zero-pressure and irrotational fluid. We show that, first, if we ignore the coupling with gravitational waves the Newtonian cosmology is exactly valid even to the second order in perturbation. Second, the pure relativistic correction terms start appearing from the third order. Third, the correction terms are independent of the horizon scale and are quite small in the large-scale near the horizon. These conclusions are based on our special (and proper) choice of variables and gauge conditions. In a complementary situation where the system is weakly relativistic but fully nonlinear (thus, far inside the horizon) we can employ the post-Newtonian approximation. We also show that in the large-scale structures the post-Newtonian effects are quite small. As a consequence, now we can rely on the Newtonian gravity in analyzing the evolution of nonlinear large-scale structures even near the horizon volume.Comment: 8 pages, no figur

    Evidence for universal structure in galactic halos

    Get PDF
    The late infall of dark matter onto a galaxy produces structure (such as caustics) in the distribution of dark matter in the halo. We argue that such structure is likely to occur generically on length scales proportional to lt0vrotl \sim t_0 v_{rot}, where t0t_0 is the age of the universe and vrotv_{rot} is the rotation velocity of the galaxy. A set of 32 extended galactic rotation curves is analyzed. For each curve, the radial coordinate is rescaled according to rr~r(v0/vrot)r\to \tilde r \equiv r (v_0 / v_{rot}), where we choose v0=220km/sv_0 = 220 km/s. A linear fit to each rescaled rotation curve is subtracted, and the residuals are binned and averaged. The sample shows significant features near r~=40kpc\tilde r = 40 kpc and r~=20kpc\tilde r = 20 kpc. This is consistent with the predictions of the self-similar caustic ring model of galactic halos.Comment: 4 pages, LaTeX, 1 epsf figur
    corecore