711 research outputs found
Recharging RFID Tags for Environmental Monitoring Using UAVs: A Feasibility Analysis
RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consumption and their batteries capacities are often too low, even if low power consumption techniques are implemented. In these operational situations tags should be kept in operation for long periods of time and the common solution is to go directly where they are installed and recharge them manually or change their batteries; alternatively, when possible, small photovoltaic (PV) panels may be adopted. This paper proposes a feasibility analysis of how it is possible to recharge a multipurpose RFID tag using a UAV (Unmanned Aerial Vehicle), which is programmed to go above the tags and recharge them. This possibility is analyzed from an energetic point of view assuming to recharge a Wireless Sensor Network (WSN) using a common commercial UAV adequately instrumented using the wireless power transfer technique
On the Use of a 77 GHz Automotive Radar as a Microwave Rain Gauge
The European Telecommunications Standards Institute (ETSI) defines the frequency band of 77 GHz (W-band) as the one dedicated to automatic cruise control long-range radars. A car can be thought as a moving integrated weather sensor since it can provide meteorological information exploiting the sensors installed on board. This work presents the preliminary analysis of how a 77 GHz mini radar can be used as a short range microwave rain gauge. After the discussion of the Mie scattering formulation applied to a microwave rain gauge working in the W-band, the proposal of a new Z-R equation to be used for correct rain estimation is given. Atmospheric attenuation and absorption are estimated taking into account the ITU-T recommendations. Functional requirements in adapting automatic cruise control long-range radar to a microwave rain gauge are analyzed. The technical specifications are determined in order to meet the functional requirements
SigMate: a MATLAB-based automated tool for extracellular neuronal signal processing and analysis
Rapid advances in neuronal probe technology for multisite recording of brain activity have posed a significant challenge to neuroscientists for processing and analyzing the recorded signals. To be able to infer meaningful conclusions quickly and accurately from large datasets, automated and sophisticated signal processing and analysis tools are required. This paper presents a Matlab-based novel tool, âSigMateâ, incorporating standard methods to analyze spikes and EEG signals, and in-house solutions for local field potentials (LFPs) analysis. Available modules at present are â 1. In-house developed algorithms for: data display (2D and 3D), file operations (file splitting, file concatenation, and file column rearranging), baseline correction, slow stimulus artifact removal, noise characterization and signal quality assessment, current source density (CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, and single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well as signals from multiple recording sources. The in-house developed tools for LFP analysis have been extensively tested with signals recorded using standard extracellular recording electrode, and planar and implantable multi transistor array (MTA) based neural probes. SigMate will be disseminated shortly to the neuroscience community under the open-source GNU-General Public License
Progress on the realization of innovative low cost disposable hail sensing probes
Detailed studies and researches about hail characterization are considered to play a key role both in weather prediction and potentially also in damage assessment after a strong hail event occurred. Most monitoring instruments perform indirect monitoring operations, sensing the parameters from a remote position and not being directly inside a hailstorm.
Since 2015 the CINFAI (Italian National Consortium for the Physic of Atmospheres and Hydrospheres) with its local operative research unit at the DET (Department of Electronic and Telecommunications) of Politecnico di Torino, Italy, realized a first preliminary study concerning the realization of artificial disposable sensing probes to study and monitor hail (conducted within a project called HaSP, founded by Regione Piemonte, Italy) [1]. The study was continued in cooperation with EST (Envisens Technologies s.r.l.), a small Italian engineering company, in order to realize the first small prototypes. Introducing the appropriate modifications, a similar version of the probes can be also suitable for monitoring atmospheric parameters [2].
Aim of this work is to present the progress on the realization of low cost disposable hail sensing probes for remote sensing and the study of the properties of hail.
The probes are designed as artificial hailstones in order to study both the physical properties of the portion of atmosphere where the formation of hail occurs and the modification of atmospheric conditions while the hailstones are falling to the ground. For this reason, the probes and the hailstones should have the most similar as possible fluid-dynamic properties.
The artificial probes can be dropped by a plane, or potentially by a UAV (Unmanned Aircraft Vehicle) if permitted by specific legislation, which fly above and through the clouds where the hail formation occurs. Each probe is equipped with different sensors and during their falling to the ground, they directly measure different physical parameters (e.g humidity, temperature, pressure, accelerationâŠ). All data are sent to a receiver located on the ground exploiting a specific communication link realized at a frequency not affected by the presence of hail and water in the atmosphere.
The hail sensing probes can be used for efficient monitoring operations and studies of hail formation dynamics and conditions, thus increasing the set of instruments used for monitoring, remotely sensing and study the physical properties of hail, and possibly also to improve the hail forecasting models
Derivation of Z-R equation using Mie approach for a 77 GHz radar
The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge.
To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory.
The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A sensitivity analysis of a 77 GHz weather radar using such Z-R relation is also studied.
The work shows that the right knowledge of Z-R equation is absolutely essential to use such a specific radar for the estimation of rainfall. The use Mie scattering theory is absolutely necessary for a 77 GHz radar in order to avoid the heavy underestimation of rainfall
A new modular control board for pulse-jet cleaning of dust collector filter bags
This work presents a timing system modular control board to be used for pulse-jet cleaning of dust collector filter bags or pneumatic conveying systems. Many systems of this kind are already available on the market but only some of them have the ability to operate in full range alternating current power supplies. The presented versatile and innovative control board can control the electro valves, either the ones operating with alternating current and those in direct current (since they are both used in the industrial plants). For the same reason, the designed prototype system can be powered with different voltages, widening the number of potential industrial applications. The electronic board has as main advantage the ability to fully automate the cleaning cycle. It can drive many electro valves simultaneously since it is possible to connect more control boards together if needed. It also allows the user to separate the control section of the system from the section dedicated to the actuation of the electro valves. The electro valves can be controlled from a PC terminal via ethernet. The work describes the adopted solutions and the steps made for the design of the entire prototypal modular board, with particular focus on the innovative timing system
Real Time Monitoring of Extreme Rainfall Events with Simple X-Band Mini Weather Radar
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations
Absorption \textit{versus} Adsorption: High-Throughput Computation of Impurities in 2D Materials
Doping of a two-dimensional (2D) material by impurity atoms occurs
\textit{via} two distinct mechanisms: absorption of the dopants by the 2D
crystal or adsorption on its surface. To distinguish the relevant mechanism, we
systematically dope 53 experimentally synthesized 2D monolayers by 65 different
chemical elements in both absorption and adsorption sites. The resulting 17,598
doped monolayer structures were generated using the newly developed ASE
\texttt{DefectBuilder} -- a Python tool to set up point defects in 2D and bulk
materials -- and subsequently relaxed by an automated high-throughput DFT
workflow. Interstitial positions are preferred for small dopants with partially
filled valence electrons in host materials with large lattice parameters. On
the contrary, adatoms are favored for dopants with a low number of valence
electrons due to lower coordination of adsorption sites compared to
interstitials. The relaxed structures, characterization parameters, defect
formation energies, and magnetic moments (spins) are available in an open
database to help advance our understanding of defects in 2D materials.Comment: Joel Davidsson and Fabian Bertoldo contributed equall
Recommended from our members
An automated classification method for single sweep local field potentials recorded from rat barrel cortex under mechanical whisker stimulation
Understanding brain signals as an outcome of brainâs information processing is a challenge for the neuroscience and neuroengineering community. Rodents sense and explore the environment through whisking. The local field potentials (LFPs) recorded from the barrel 28 columns of the rat somatosensory cortex (S1) during whisking provide information about the tactile information processing pathway. Particularly when using large-scale high-resolution neuronal probes, during each experiment many single LFPs are recorded as an outcome of underlying neuronal network activation and averaged to extract information. However, single LFP signals are frequently very different from each other and extracting information provided by their shape is a useful way to better decode information transmitted by the network. In this work, we propose an automated method capable of classifying these signals based on their shapes. We used template matching approach to recognize single LFPs and extracted the contour information from the recognized signal to generate a feature matrix, which is then classified using the intelligent Kâmeans clustering. As an application example, shape specific information (e.g., latency, and amplitude) of LFPs evoked in the rat somatosensory barrel cortex and used in decoding the rat whiskers information processing pathway is provided by the method
An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation
Rodents perform object localization, texture and shape discrimination very precisely through whisking. During whisking, microcircuits in corresponding barrel columns get activated to segregate and integrate tactile information through the information processing pathway. Sensory signals are projected through the brainstem and thalamus to the corresponding âbarrel columnsâ where different cortical layers are activated during signal projection. Therefore, having precise information about the layer activation order is desirable to better understand this signal processing pathway. This work proposes an automated, computationally efficient and easy to implement method to determine the cortical layer activation from intracortically recorded local field potentials (LFPs) and derived current source density (CSD) profiles:
1. Barrel cortex LFPs are represented by a template of four subsequent events: small positive/negative (E1) â large negative (E2) â slow positive (E3)â slow long negative (E4). The method exploits the layer specific characteristics of LFPs to obtain latencies of the individual events (E1âE4), then taking the latency of E2 for calculating the layer activation order.
2. The corresponding CSD profile is calculated from the LFPs and the first sinkâs peak is considered as a reference point to calculate latencies and evaluate the layer activation order. Other reference points require manual calculation.
Similar results of layer activation sequence are found using LFPs and CSDs. Extensive tests on LFPs recorded using standard borosilicate micropipettes demonstrated the methodâs workability. An interpretation of layer activation order and CSD profiles on the basis of a simplified interacortical barrel column architecture is also provided
- âŠ