3,870 research outputs found

    The dwarf low surface brightness population in different environments of the Local Universe

    Get PDF
    The nature of the dwarf galaxy population as a function of location in the cluster and within different environments is investigated. We have previously described the results of a search for low surface brightness objects in data drawn from an East-West strip of the Virgo cluster (Sabatini et al., 2003) and have compared this to a large area strip outside of the cluster (Roberts et al., 2004). In this talk I compare the East-West data (sampling sub-cluster A and outward) to new data along a North-South cluster strip that samples a different region (part of sub-cluster A, and the N,M clouds) and with data obtained for the Ursa Major cluster and fields around the spiral galaxy M101. The sample of dwarf galaxies in different environments is obtained from uniform datasets that reach central surface brightness values of ~26 B mag/arcsec^2 and an apparent B magnitude of 21 (M_B=-10 for a Virgo Cluster distance of 16 Mpc). We discuss and interpret our results on the properties and distribution of dwarf low surface brightness galaxies in the context of variuos physical processes that are thought to act on galaxies as they form and evolve.Comment: 10 pages, 3 figures, to appear in "Dark Galaxies and Lost Baryons", IAU244 conference proceeding

    Global Models for the Evolution of Embedded, Accreting Protostellar Disks

    Full text link
    Most analytic work to date on protostellar disks has focused on those in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via two mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of angular momentum transport, and demonstrate that for stars with final masses greater than roughly one solar mass, gravitational instabilities are the most important mechanism as most of the mass accumulates. We predict that binary formation through disk fission, fragmentation of the disk into small objects, and spiral arm strength all increase in importance to higher stellar masses.Comment: 17 pages, 9 figures, accepted for publication in ApJ. Model updated to better reflect simulations in the literature; discussion of key assumptions and strategy clarifie

    A young protoplanetary disk in the Bok globule CB26?

    Get PDF
    We present sub-arcsecond resolution millimeter-wave images of a circumstellar disk in the Bok globule CB26. The presence of an edge-on disk is confirmed by the dust continuum morphology and the velocity field of 13CO emission, which displays a Keplerian rotation pattern about an axis perpendicular to the long axis of the dust emission. We deduce a mass ~0.3 Msun for the obscured central star. The disk is optically thick at mm wavelengths inside 120 AU, has a symmetric 20 degree warp beyond 120 AU, an outer radius of ~200 AU, and a mass of at least 0.1 Msun. We suggest that the CB26 system is in an intermediate stage between deeply embedded protostellar accretion disks and the more evolved, perhaps protoplanetary, disks around T Tauri stars.Comment: 4 pages, 3 figures. Accepted by ApJ Letter

    2DPHOT: A Multi-purpose Environment for the Two-dimensional Analysis of Wide-field Images

    Full text link
    We describe 2DPHOT, a general purpose analysis environment for source detection and analysis in deep wide-field images. 2DPHOT is an automated tool to obtain both integrated and surface photometry of galaxies in an image, to perform reliable star-galaxy separation with accurate estimates of contamination at faint flux levels, and to estimate completeness of the image catalog. We describe the analysis strategy on which 2DPHOT is based, and provide a detailed description of the different algorithms implemented in the package. This new environment is intended as a dedicated tool to process the wealth of data from wide-field imaging surveys. To this end, the package is complemented by 2DGUI, an environment that allows multiple processing of data using a range of computing architectures.Comment: Accepted to PAS

    The Properties of Field Elliptical Galaxies at Intermediate Redshift. I: Empirical Scaling Laws

    Get PDF
    We present measurements of the Fundamental Plane (FP) parameters (the effective radius, the mean effective surface brightness, and the central velocity dispersion) of six field elliptical galaxies at intermediate redshift. The imaging is taken from the Medium Deep Survey of the Hubble Space Telescope, while the kinematical data are obtained from long-slit spectroscopy using the 3.6-m ESO telescope. The Fundamental Plane appears well defined in the field even at redshift \approx 0.3. The data show a shift in the FP zero point with respect to the local relation, possibly indicating modest evolution, consistent with the result found for intermediate redshift cluster samples. The FP slopes derived for our field data, plus other cluster ellipticals at intermediate redshift taken from the literature, differ from the local ones, but are still consistent with the interpretation of the FP as a result of homology, of the virial theorem and of the existence of a relation between luminosity and mass, LMηL \propto M^{\eta}. We also derive the surface brightness vs. effective radius relation for nine galaxies with redshift up to z0.6z \approx0.6, and data from the literature; the evolution that can be inferred is consistent with what is found using the FP.Comment: 17 pages, including 9 figures, MNRAS, accepte

    Nutritional values of wild fruits and consumption by migrant frugivorous birds.

    Get PDF
    Used 18 fruit species and 11 migrant frugivorous bird species in Illinois. The only seasonal trends in fruit traits were interspecific increases in absolute quantity of K and protein per fruit. Fruit energy content did not differ among species having bicolored vs. monochrome or small vs. large fruit displays. The fruit mass consumed was correlated best with dry pulp mass per fruit, providing significant positive correlations in 6 of 11 frugivorous species. Large fruit size relative to bill size did not appear to affect fruit consumption over the range of fruit sizes and bird species used. Because retained energy was correlated with mass consumed, the fruit pulp mass consumed was in most cases a good index of the energy obtained. Some significant differences occurred in digestive efficiency of a bird species eating different fruit species, and among different bird species eating a single fruit species, but no trends were apparent. Regurgitated seed generally spent less time in a bird than did defecated seeds, facilitating more rapid disposal of seed ballast. Smaller birds defecated only small seeds and regurgitated some small seeds as well as all large ones, whereas larger birds defecated all smaller seeds and many larger ones. Resultant seed shadows thus may depend upon both bird and seed size. -from Author

    Model-independent view on the low-mass proton-antiproton enhancement

    Full text link
    We present a simple interpretation of the recently observed near-threshold proton-antiproton enhancement. It is described by a set of low-energy parameters deduced from the analysis of NantiN experiments at LEAR. We predict a related effect in photoproduction reaction under study by CLAS collaboration.Comment: 10 pages, 2 figure

    On the density profile of the globular cluster M92

    Full text link
    We present new number density and surface brightness profiles for the globular cluster M92 (NGC 6341). These profiles are calculated from optical images collected with the CCD mosaic camera MegaCam at the Canada-France-Hawaii-Telescope and with the Advanced Camera for Surveys on the Hubble Space Telescope. The ground-based data were supplemented with the Sloan Digital Sky Survey photometric catalog. Special care was taken to discriminate candidate cluster stars from field stars and to subtract the background contamination from both profiles. By examining the contour levels of the number density, we found that the stellar distribution becomes clumpy at radial distances larger than about 13 arcminutes, and there is no preferred orientation of contours in space. We performed detailed fits of King and Wilson models to the observed profiles. The best-fit models underestimate the number density inside the core radius. Wilson models better represent the observations, in particular in the outermost cluster regions: the good global agreement of these models with the observations suggests that there is no need to introduce an extra-tidal halo to explain the radial distribution of stars at large radial distances. The best-fit models for the number density and the surface brightness profiles are different, even though they are based on the same observations. Additional tests support the evidence that this fact reflects the difference in the radial distribution of the stellar tracers that determine the observed profiles (main sequence stars for the number density, bright evolved stars for the surface brightness).Comment: 18 pages, 10 figures, Accepted by A
    corecore