14 research outputs found
Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana
The role of the phytohormone abscisic acid (ABA) in the regulation of proline synthesis was investigated by following the expression of the At-PSS and At-P5R proline biosynthesis genes in Arabidopsis thaliana wild type, in an ABA-deficient ubal-1 mutant as well as in ABA-insensitive abil-1 and abi2-1 mutants after ABA, cold and osmotic stress treatments. In wild-type and in ABA mutant seedlings, 50 mu M ABA or osmotic stress treatment triggered expression of At-P5S, whereas At-P5R accumulation was scarcely detectable. Expression of either gene was mediated by endogenous ABA since transcript levels were similar in wild-type and in ABA-deficient mutant plants. Proline accumulated to a greater extent after osmotic stress than upon ABA or cold treatment. Thus. ABA-treated abil-1 mutant plants accumulated less proline than the ABA-treated wild type. Upon salt stress, proline accumulated to a lesser extent in abal-1 and abil-1 mutant plants, suggesting an indirect role of ABA on proline accumulation during salt adaptation of the plant. These results indicate that the expression of the genes of the proline biosynthetic pathway is ABA independent upon cold and osmotic treatments, although their expression can be triggered by exogenously applied ABA. However, the endogenous ABA content may affect proline accumulation upon salt stress, suggesting post-transcriptional control of proline biosynthesis in response to NaCl
Abscisic acid independent and abscisic acid dependent regulation of the proline biosynthesis upon cold and osmotic stresses in Arabidopsis thaliana
info:eu-repo/semantics/publishe
Current advances in abscisic acid action and signalling
International audienceAbscisic acid (ABA) participates in the control of diverse physiological processes. The characterization of deficient mutants has clarified the ABA biosynthetic pathway in higher plants. Deficient mutants also lead to a revaluation of the extent of ABA action during seed development and in the response of vegetative tissues to environmental stress. Although ABA receptor(s) have not yet been identified, considerable progress has been recently made in the characterization of more downstream elements of the ABA regulatory network. ABA controls stomatal aperture by rapidly regulating identified ion transporters in guard cells, and the details of the underlying signalling pathways start to emerge. ABA actions in other cell types involve modifications of gene expression. The promoter analysis of ABA-responsive genes has revealed a diversity of cis-acting elements and a few associated trans-acting factors have been isolated. Finally, characterization of mutants defective in ABA responsiveness, and molecular cloning of the corresponding loci, has proven to be a powerful approach to dissect the molecular nature of ABA signalling cascades
The abi1-1 mutation blocks ABA signaling downstream of cADPR action
Arabidopsis thaliana abscisic acid insensitive 1-1 (abi1-1) is a dominant mutant that is insensitive to the inhibition of germination and growth by the plant hormone, abscisic acid (ABA). The mutation severely decreases the catalytic activity of the ABI1 type 2C protein phosphatase (PP2C). However, the site of action of the abi1-1/ABI1 in the ABA signal transduction pathway has not yet been determined. Using single cell assays, we showed that microinjecting mutant abi1-1 protein inhibited the activation of RD29A-GUS and KIN2-GUS in response to ABA, cyclic ADP-ribose (cADPR), and Ca2+. The inhibitory effect of the mutant protein, however, was reversed by co-microinjection of an excess amount of the ABI1 protein. In transgenic Arabidopsis plants, overexpression of abi1-1 rendered the plants insensitive to ABA during germination, whereas overexpression of ABI1 did not have any apparent effect. Moreover, transgenic plants overexpressing abi1-1 were blocked in the induction of ABA-responsive genes; however, overexpression of ABI1 did not affect gene expression. Taken together, our results demonstrate that abi1-1 is likely to be a dominant negative mutation and ABI1 likely acts downstream of cADPR in the ABA-signaling pathway. Our results on ABI1 overexpression in Arabidopsis are not compatible with a negative regulatory role of this phosphatase in ABA responses
Mitogen-activated protein kinase and abscisic acid signal transduction.
The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.</p