10 research outputs found

    Tree diversity reduces herbivory by forest insects

    No full text
    Biodiversity loss from plant communities is often acknowledged to affect primary production but little is known about effects on herbivores. We conducted a meta-analysis of a worldwide data set of 119 studies to compare herbivory in single-species and mixed forests. This showed a significant reduction of herbivory in more diverse forests but this varied with the host specificity of insects. In diverse forests, herbivory by oligophagous species was virtually always reduced, whereas the response of polyphagous species was variable. Further analyses revealed that the composition of tree mixtures may be more important than species richness per se because diversity effects on herbivory were greater when mixed forests comprised taxonomically more distant tree species, and when the proportion of non-host trees was greater than that of host trees. These findings provide new support for the role of biodiversity in ecosystem functioning across trophic level

    Woody Biomass from Short Rotation Energy Crops

    No full text

    Science goals and mission architecture of the Europa Lander mission concept

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hand, K., Phillips, C., Murray, A., Garvin, J., Maize, E., Gibbs, R., Reeves, G., San Martin, A., Tan-Wang, G., Krajewski, J., Hurst, K., Crum, R., Kennedy, B., McElrath, T., Gallon, J., Sabahi, D., Thurman, S., Goldstein, B., Estabrook, P., Lee, S. W., Dooley, J. A., Brinckerhoff, W. B., Edgett, K. S., German, C. R., Hoehler, T. M., Hörst, S. M., Lunine, J. I., Paranicas, C., Nealson, K., Smith, D. E., Templeton, A. S., Russell, M. J., Schmidt, B., Christner, B., Ehlmann, B., Hayes, A., Rhoden, A., Willis, P., Yingst, R. A., Craft, K., Cameron, M. E., Nordheim, T., Pitesky, J., Scully, J., Hofgartner, J., Sell, S. W., Barltrop, K. J., Izraelevitz, J., Brandon, E. J., Seong, J., Jones, J.-P., Pasalic, J., Billings, K. J., Ruiz, J. P., Bugga, R. V., Graham, D., Arenas, L. A., Takeyama, D., Drummond, M., Aghazarian, H., Andersen, A. J., Andersen, K. B., Anderson, E. W., Babuscia, A., Backes, P. G., Bailey, E. S., Balentine, D., Ballard, C. G., Berisford, D. F., Bhandari, P., Blackwood, K., Bolotin, G. S., Bovre, E. A., Bowkett, J., Boykins, K. T., Bramble, M. S., Brice, T. M., Briggs, P., Brinkman, A. P., Brooks, S. M., Buffington, B. B., Burns, B., Cable, M. L., Campagnola, S., Cangahuala, L. A., Carr, G. A., Casani, J. R., Chahat, N. E., Chamberlain-Simon, B. K., Cheng, Y., Chien, S. A., Cook, B. T., Cooper, M., DiNicola, M., Clement, B., Dean, Z., Cullimore, E. A., Curtis, A. G., Croix, J-P. de la, Pasquale, P. Di, Dodd, E. M., Dubord, L. A., Edlund, J. A., Ellyin, R., Emanuel, B., Foster, J. T., Ganino, A. J., Garner, G. J., Gibson, M. T., Gildner, M., Glazebrook, K. J., Greco, M. E., Green, W. M., Hatch, S. J., Hetzel, M. M., Hoey, W. A., Hofmann, A. E., Ionasescu, R., Jain, A., Jasper, J. D., Johannesen, J. R., Johnson, G. K., Jun, I., Katake, A. B., Kim-Castet, S. Y., Kim, D. I., Kim, W., Klonicki, E. F., Kobeissi, B., Kobie, B. D., Kochocki, J., Kokorowski, M., Kosberg, J. A., Kriechbaum, K., Kulkarni, T. P., Lam, R. L., Landau, D. F., Lattimore, M. A., Laubach, S. L., Lawler, C. R., Lim, G., Lin, J. Y., Litwin, T. E., Lo, M. W., Logan, C. A., Maghasoudi, E., Mandrake, L., Marchetti, Y., Marteau, E., Maxwell, K. A., Namee, J. B. Mc, Mcintyre, O., Meacham, M., Melko, J. P., Mueller, J., Muliere, D. A., Mysore, A., Nash, J., Ono, H., Parker, J. M., Perkins, R. C., Petropoulos, A. E., Gaut, A., Gomez, M. Y. Piette, Casillas, R. P., Preudhomme, M., Pyrzak, G., Rapinchuk, J., Ratliff, J. M., Ray, T. L., Roberts, E. T., Roffo, K., Roth, D. C., Russino, J. A., Schmidt, T. M., Schoppers, M. J., Senent, J. S., Serricchio, F., Sheldon, D. J., Shiraishi, L. R., Shirvanian, J., Siegel, K. J., Singh, G., Sirota, A. R., Skulsky, E. D., Stehly, J. S., Strange, N. J., Stevens, S. U., Sunada, E. T., Tepsuporn, S. P., Tosi, L. P. C., Trawny, N., Uchenik, I., Verma, V., Volpe, R. A., Wagner, C. T., Wang, D., Willson, R. G., Wolff, J. L., Wong, A. T., Zimmer, A. K., Sukhatme, K. G., Bago, K. A., Chen, Y., Deardorff, A. M., Kuch, R. S., Lim, C., Syvertson, M. L., Arakaki, G. A., Avila, A., DeBruin, K. J., Frick, A., Harris, J. R., Heverly, M. C., Kawata, J. M., Kim, S.-K., Kipp, D. M., Murphy, J., Smith, M. W., Spaulding, M. D., Thakker, R., Warner, N. Z., Yahnker, C. R., Young, M. E., Magner, T., Adams, D., Bedini, P., Mehr, L., Sheldon, C., Vernon, S., Bailey, V., Briere, M., Butler, M., Davis, A., Ensor, S., Gannon, M., Haapala-Chalk, A., Hartka, T., Holdridge, M., Hong, A., Hunt, J., Iskow, J., Kahler, F., Murray, K., Napolillo, D., Norkus, M., Pfisterer, R., Porter, J., Roth, D., Schwartz, P., Wolfarth, L., Cardiff, E. H., Davis, A., Grob, E. W., Adam, J. R., Betts, E., Norwood, J., Heller, M. M., Voskuilen, T., Sakievich, P., Gray, L., Hansen, D. J., Irick, K. W., Hewson, J. C., Lamb, J., Stacy, S. C., Brotherton, C. M., Tappan, A. S., Benally, D., Thigpen, H., Ortiz, E., Sandoval, D., Ison, A. M., Warren, M., Stromberg, P. G., Thelen, P. M., Blasy, B., Nandy, P., Haddad, A. W., Trujillo, L. B., Wiseley, T. H., Bell, S. A., Teske, N. P., Post, C., Torres-Castro, L., Grosso, C. Wasiolek, M. Science goals and mission architecture of the Europa Lander mission concept. The Planetary Science Journal, 3(1), (2022): 22, https://doi.org/10.3847/psj/ac4493.Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa's icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.K.P.H., C.B.P., E.M., and all authors affiliated with the Jet Propulsion Laboratory carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (grant No. 80NM0018D0004). J.I.L. was the David Baltimore Distinguished Visiting Scientist during the preparation of the SDT report. JPL/Caltech2021

    Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites

    No full text
    corecore