199 research outputs found

    Ramond-Ramond (boundary) states

    Get PDF
    The description of D-branes as boundary states for type II string theories (in the covariant formulation) requires particular care in the R-R sector. Also the vertices for R-R potentials that can couple to D-branes need a careful handling. As an illustration of this, the example of the D0-D8 system is reviewed, where a ``microscopic'' description of the interaction via exchange of R-R potentials becomes possible.Comment: 8 pages, LaTeX, no figures. Talk presented at the 2nd Conference on Quantum aspects of Gauge Theories, Supersymmetry and Unification, Corfu, Greece, 21-26 September 199

    Exact analytical expression for magnetoresistance using quantum groups

    Full text link
    We obtain an exact analytical expression for magnetoresistance using noncommutative geometry and quantum groups.Then we will show that there is a deep relationship between magnetoresistance and the quantum group suq(2)su_{q}(2), from which we understand the quantum interpretation of the quantum corrections to the conductivity.Comment: 8 pages, 3 figures, replaced with the version published in Physics Letters

    Supersymmetric IIB Solutions with Schr\"{o}dinger Symmetry

    Full text link
    We find a class of non-relativistic supersymmetric solutions of IIB supergravity with non-trivial B-field that have dynamical exponent n=2 and are invariant under the Schrodinger group. For a general Sasaki-Einstein internal manifold with U(1)^3 isometry, the solutions have two real supercharges. When the internal manifold is S^5, the number of supercharges can be four. We also find a large class of non-relativistic scale invariant type IIB solutions with dynamical exponents different from two. The explicit solutions and the values of the dynamical exponents are determined by vector eigenfunctions and eigenvalues of the Laplacian on an Einstein manifold.Comment: 28 pages, LaTe

    Holographic Spectral Functions in Metallic AdS/CFT

    Full text link
    We study the holographic D3/D7 setup dual to N=4 supersymmetric Yang-Mills with quenched fundamental matter. We extend the previous analyses of conductivity and photoproduction to the case where there is a finite electric field. Due to the electric field a special region in the D7-brane geometry, labelled the singular shell, appears generically, and the computation of correlators involves a careful study of the indicial exponents both at this singular region and at the horizon. We show that there is a unique choice consistent with the known expression for the electrical conductivity found by Karch and O'Bannon. We explore the parameter space spanned by the quark mass, the baryon density and the electric field. We find a region where the conductivity and photoproduction change rapidly and trace this behavior to competing effects which manifest themselves as a crossover behavior in the probe brane embeddings.Comment: 30 pages, 13 figures, v2. references added, minor corrections mad

    Closed-String Tachyons and the Hagedorn Transition in AdS Space

    Get PDF
    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidean AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy', the value of which decreases along the line of flow.Comment: 24 pages, Harvmac. 2 Figures. Typos corrected and reference adde

    Semiclassical Strings, Dipole Deformations of N=1 SYM and Decoupling of KK Modes

    Full text link
    In this paper we investigate the recently found Îł\gamma-deformed Maldacena-Nunez background by studying the behavior of different semiclassical string configurations. This background is conjectured to be dual to dipole deformations of N=1\N=1 SYM. We compare our results to those in the pure Maldacena-Nunez background and show that the energies of our string configurations are higher than in the undeformed background. Thinking in the lines of (hep-th/0505100) we argue that this is an evidence for better decoupling of the Kaluza-Klein modes from the pure SYM theory excitations. Moreover we are able to find a limit of the background in which the string energy is independent of Îł\gamma, these strings are interpreted as corresponding to pure gauge theory effects.Comment: 31 pages, references added, new solutions in Section 7 presented, an appendix added, to appear in JHE

    Thermal Giant Graviton with Non-commutative Dipole Field

    Full text link
    Using the type II near-extremal 3D-branes solution we apply the T-duality and smeared twist to construct the supergravity backgrounds which dual to the 4D finite temperature non-commutative dipole field theories. We first consider the zero-temperature system in which, depending on the property of dipole vectors it may be N=2, N=1 or N=0 theory. We investigate the rotating D3-brane configurations moving on the spactimes and show that, for the cases of N=2 and N =1 the rotating D3-brane could be blowed up to the stable spherical configuration which is called as giant graviton and has a less energy than the point-like graviton. The giant graviton configuration is stable only if its angular momentum was less than a critical value of PcP_c which is an increasing function of the dipole strength. For the case of non-supersymmetric theory, however, the spherical configuration has a larger energy than the point-like graviton. We also find that the dipole field always render the dual giant graviton to be more stable than the point-like graviton. The relation of dual giant graviton energy with its angular momentum, which in the AdS/CFT correspondence being the operator anomalous dimension is obtained. We furthermore show that the temperature does not change the property of the giant graviton, while it will render the dual giant graviton to be unstable.Comment: Latex 20 pages, add comments about BPS bound below (3.8

    Energy Distribution associated with Static Axisymmetric Solutions

    Full text link
    This paper has been addressed to a very old but burning problem of energy in General Relativity. We evaluate energy and momentum densities for the static and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen and the gamma metrics, belonging to the Weyl class. We apply four well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mo¨\ddot{o}ller to compute energy-momentum density components. We obtain that these prescriptions do not provide similar energy density, however momentum becomes constant in each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc

    Experimental study of weak antilocalization effect in a high mobility InGaAs/InP quantum well

    Full text link
    The magnetoresistance associated with quantum interference corrections in a high mobility, gated InGaAs/InP quantum well structure is studied as a function of temperature, gate voltage, and angle of the tilted magnetic field. Particular attention is paid to the experimental extraction of phase-breaking and spin-orbit scattering times when weak anti- localization effects are prominent. Compared with metals and low mobility semiconductors the characteristic magnetic field Btr=â„Ź/4eDĎ„B_{tr} = \hbar/4eD \tau in high mobility samples is very small and the experimental dependencies of the interference effects extend to fields several hundreds of times larger. Fitting experimental results under these conditions therefore requires theories valid for arbitrary magnetic field. It was found, however, that such a theory was unable to fit the experimental data without introducing an extra, empirical, scale factor of about 2. Measurements in tilted magnetic fields and as a function of temperature established that both the weak localization and the weak anti-localization effects have the same, orbital origin. Fits to the data confirmed that the width of the low field feature, whether a weak localization or a weak anti-localization peak, is determined by the phase-breaking time and also established that the universal (negative) magnetoresistance observed in the high field limit is associated with a temperature independent spin-orbit scattering time.Comment: 13 pages including 10 figure

    Plasmonic atoms and plasmonic molecules

    Get PDF
    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.Comment: 30 pages, 16 figure
    • …
    corecore