293 research outputs found

    Imaging coherent transport in graphene (Part II): Probing weak localization

    Get PDF
    Graphene has opened new avenues of research in quantum transport, with potential applications for coherent electronics. Coherent transport depends sensitively on scattering from microscopic disorder present in graphene samples: electron waves traveling along different paths interfere, changing the total conductance. Weak localization is produced by the coherent backscattering of waves, while universal conductance fluctuations are created by summing over all paths. In this work, we obtain conductance images of weak localization with a liquid-He-cooled scanning probe microscope, by using the tip to create a movable scatterer in a graphene device. This technique allows us to investigate coherent transport with a probe of size comparable to the electron wavelength. Images of magnetoconductance \textit{vs.} tip position map the effects of disorder by moving a single scatterer, revealing how electron interference is modified by the tip perturbation. The weak localization dip in conductivity at B=0 is obtained by averaging magnetoconductance traces at different positions of the tip-created scatterer. The width ΔBWL\Delta B_{WL} of the dip yields an estimate of the electron coherence length LϕL_\phi at fixed charge density. This "scanning scatterer" method provides a new way of investigating coherent transport in graphene by directly perturbing the disorder configuration that creates these interferometric effects.Comment: 18 pages, 7 figure

    Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    Get PDF
    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2 of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2 and details of the aggregate. We find that in the motional averaging regime T2 scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2 N^{-0.44} for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2 is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.Comment: 20 pages, 3 figures, submitted to Journal of Magnetism and Magnetic Material

    Thermal conductivity factor for beef of NOR and DFD grades at the subcryoscopic temperatures

    Get PDF
    Thermal conductivity factor and specific isobaric heat capacity of food products are currently the most important parameters in the development of mathematical models for food freezing and thawing and in improving production technology. There is significant variance among the existing experimental data for the thermal conductivity factor in meat. Most of the modern calculated relationships are based on the nutritional approach, which favorably differs by the ability to calculate the thermophysical characteristics of any food products. However, the calculation error at the subcryoscopic temperatures may be 15% to 20%. The development of superchilling as a way of storing meat requires high accuracy of freezing time calculation, including vacuumpacked boneless meat. In the presented article, the authors investigated hydrogen index, cryoscopic temperature, frozen moisture proportion and thermal conductivity factor for beef M. longissimus dorsi samples of NOR and DFD grades. It was found that DFD beef is characterized by 10% to 12% higher values of thermal conductivity factor in comparison with NOR grade. Using the method of regression analysis, the authors developed empirical relationships for calculating the thermal conductivity factor of meat depending on its temperature and pH level. Unlike cryoscopic temperature and frozen moisture proportion, pH is easy to measure and may be easily used on a conveyor belt for more accurate assessment of meat thermophysical properties. With an increase in pH from 5.3 to 7, an increase in cryoscopic temperature is observed from minus 0.94 °C to minus 0.72 °C. It has been shown that one of the factors for the higher cryoscopic temperature and higher pH level of DFD beef is higher water-holding capacity with less strongly bound moisture

    Time-resolved ferromagnetic resonance in epitaxial Fe1-xCox films

    Full text link
    Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is rotated with respect to the static and pulsed field directions, providing a complete mapping of the free energy surface and characteristic relaxation times. The magnetic response can be simulated with a simple coherent rotation model except in the immediate vicinity of switching fields. Bulk and surface anisotropies are identified, and unusual dynamics associated with the coexistence of cubic and uniaxial anisotropies are observed.Comment: PDF - 4 figure
    corecore