1,619 research outputs found
Reducing Interconnect Cost in NoC through Serialized Asynchronous Links
This work investigates the application of serialization as a means of reducing the number of wires in NoC combined with asynchronous links in order to simplify the clocking of the link. Throughput is reduced but savings in routing area and reduction in power could make this attractiv
Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge
A morphing leading edge produces a continuous aerodynamic surface that has no gaps between the moving and fixed parts. The continuous seamless shape has the potential to reduce drag, compared to conventional devices, such as slats that produce a discrete aerofoil shape change. However, the morphing leading edge has to achieve the required target shape by deforming from the baseline shape under the aerodynamic loads. In this paper, a conceptual-level method is proposed to evaluate the morphing leading edge structure. The feasibility of the skin design is validated by checking the failure index of the composite when the morphing leading edge undergoes the shape change. The stiffness of the morphing leading edge skin is spatially varied using variable lamina angles, and comparisons to the skin with constant stiffness are made to highlight its potential to reduce the actuation forces. The structural analysis is performed using a two-level structural optimisation scheme. The first level optimisation is applied to find the optimised structural proper- ties of the leading edge skin and the associated actuation forces. The structural properties of the skin are given as a stiffness distribution, which is controlled by a B spline interpolation function. In the second level, the design solution of the skin is investigated. The skin is assumed to be made of variable stiffness composite. The stack sequence of the composite is optimised element-by-element to match the target stiffness. A failure criterion is employed to obtain the failure index when the leading edge is actuated from the baseline shape to the target shape. Test cases are given to demonstrate that the optimisation scheme is able to provide the stiffness distribution of the leading edge skin and the actuation forces can be reduced by using a spatially variable stiffness skin
On 2-group global symmetries and their anomalies
In general quantum field theories (QFTs), ordinary (0-form) global symmetries and 1-form symmetries can combine into 2-group global symmetries. We describe this phenomenon in detail using the language of symmetry defects. We exhibit a simple procedure to determine the (possible) 2-group global symmetry of a given QFT, and provide a classification of the related \u2019t Hooft anomalies (for symmetries not acting on spacetime). We also describe how QFTs can be coupled to extrinsic backgrounds for symmetry groups that differ from the intrinsic symmetry acting faithfully on the theory. Finally, we provide a variety of examples, ranging from TQFTs (gapped systems) to gapless QFTs. Along the way, we stress that the \u201cobstruction to symmetry fractionalization\u201d discussed in some condensed matter literature is really an instance of 2-group global symmetry
Hadamard states from null infinity
Free field theories on a four dimensional, globally hyperbolic spacetime,
whose dynamics is ruled by a Green hyperbolic partial differential operator,
can be quantized following the algebraic approach. It consists of a two-step
procedure: In the first part one identifies the observables of the underlying
physical system collecting them in a *-algebra which encodes their relational
and structural properties. In the second step one must identify a quantum
state, that is a positive, normalized linear functional on the *-algebra out of
which one recovers the interpretation proper of quantum mechanical theories via
the so-called Gelfand-Naimark-Segal theorem. In between the plethora of
possible states, only few of them are considered physically acceptable and they
are all characterized by the so-called Hadamard condition, a constraint on the
singular structure of the associated two-point function. Goal of this paper is
to outline a construction scheme for these states which can be applied whenever
the underlying background possesses a null (conformal) boundary. We discuss in
particular the examples of a real, massless conformally coupled scalar field
and of linearized gravity on a globally hyperbolic and asymptotically flat
spacetime.Comment: 23 pages, submitted to the Proceedings of the conference "Quantum
Mathematical Physics", held in Regensburg from the 29th of September to the
02nd of October 201
Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories
We study the local properties of a class of codimension-2 defects of the 6d
N=(2,0) theories of type J=A,D,E labeled by nilpotent orbits of a Lie algebra
\mathfrak{g}, where \mathfrak{g} is determined by J and the outer-automorphism
twist around the defect. This class is a natural generalisation of the defects
of the 6d theory of type SU(N) labeled by a Young diagram with N boxes. For any
of these defects, we determine its contribution to the dimension of the Higgs
branch, to the Coulomb branch operators and their scaling dimensions, to the 4d
central charges a and c, and to the flavour central charge k.Comment: 57 pages, LaTeX2
Quantitative multi-objective verification for probabilistic systems
We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies
N=2 S-duality via Outer-automorphism Twists
Compactification of 6d N=(2,0) theory of type G on a punctured Riemann
surface has been effectively used to understand S-dualities of 4d N=2 theories.
We can further introduce branch cuts on the Riemann surface across which the
worldvolume fields are transformed by the discrete symmetries associated to
those of the Dynkin diagram of type G. This allows us to generate more
S-dualities, and in particular to reproduce a couple of S-dual pairs found
previously by Argyres and Wittig.Comment: 8 pages, 6 figure
On the geometry of string duals with backreacting flavors
Making use of generalized calibrated geometry and G-structures we put the
problem of finding string-duals with smeared backreacting flavor branes in a
more mathematical setting. This more formal treatment of the problem allows us
to easily smear branes without good coordinate representations, establish
constraints on the smearing form and identify a topological central charge in
the SUSY algebra. After exhibiting our methods for a series of well known
examples, we apply them to the problem of flavoring a supergravity-dual to a
d=2+1 dimensional N=2 super Yang-Mills-like theory. We find new solutions to
both the flavored and unflavored systems. Interpretating these turns out to be
difficult.Comment: 38 pages - Typos corrected and references added - As published in
JHE
Higgs branch localization in three dimensions
We show that the supersymmetric partition function of three-dimensional N =2 R-symmetric Chern-Simons-matter theories on the squashed S 3 and on S 2
7 S 1 can be computed with the so-called Higgs branch localization method, alternative to the more standard Coulomb branch localization. For theories that could be completely Higgsed by Fayet-Iliopoulos terms, the path integral is dominated by BPS vortex strings sitting at two circles in the geometry. In this way, the partition function directly takes the form of a sum, over a finite number of points on the classical Coulomb branch, of a vortex-string times an antivortex-string partition functions. \ua9 2014 The Author(s)
- …