68 research outputs found

    Non Linear Proper Generalized Decomposition method applied to the magnetic simulation of a SMC microstructure

    Get PDF
    Improvement of the magnetic performances of Soft Magnetic Composites (SMC) materials requires to link the microstructures to the macroscopic magnetic behavior law. This can be achieved with the FE method using the geometry reconstruction from images of the microstructure. Nevertheless, it can lead to large computational times. In that context, the Proper Generalized Decomposition (PGD), that is an approximation method originally developed in mechanics, and based on a finite sum of separable functions, can be of interest in our case. In this work, we propose to apply the PGD method to the SMC microstructure magnetic simulation. A non-linear magnetostatic problem with the scalar potential formulation is then solved

    Stochastic post-processing calculation of iron losses – application to a PMSM

    Get PDF
    To take account of the uncertainties introduced on the magnetic properties during the manufacturing process, the present work aims to focus on the stochastic modelling of iron losses in electrical machine stators. The investigated samples are composed of 28 slinky stators, coming from the same production chain. The stochastic modelling approach is first described. Thereafter, the Monte-Carlo sampling method is used to calculate, in post-processing, the iron loss density in a PMSM that is modelled by the finite element method. The interest of such an approach is emphasized by calculating the main statistical characteristics associated to the losses variability, which are Gaussian distributed for A and O formulations. The originality of the approach is due to the fact that the global influence of the manufacturing process (cutting, assembly, …) on magnetic properties of the considered samples is taken into account in the way of computing the iron losses.This work is supported by the program MEDEE (Nord Pas-de-Calais Region, France

    Non Linear Proper Generalized Decomposition method applied to the magnetic simulation of a SMC microstructure

    Get PDF
    Improvement of the magnetic performances of Soft Magnetic Composites (SMC) materials requires to link the microstructures to the macroscopic magnetic behavior law. This can be achieved with the FE method using the geometry reconstruction from images of the microstructure. Nevertheless, it can lead to large computational times. In that context, the Proper Generalized Decomposition (PGD), that is an approximation method originally developed in mechanics, and based on a finite sum of separable functions, can be of interest in our case. In this work, we propose to apply the PGD method to the SMC microstructure magnetic simulation. A non-linear magnetostatic problem with the scalar potential formulation is then solved

    Modelling of a hysteresis motor using the Jiles-Atherton model

    Get PDF
    In this paper, we present a model of a hysteresis motor based on Maxwell's equations coupled with the Jiles-Atherton (J-A) hysteresis model solved by the finite element method. The aim of this work is to validate such a model by comparison with the experimental results (electromagnetic torque, voltage, current). We also present an analysis of this motor when imposing current or voltage in the 2D vector potential formulation

    Temperature Dependence in the Jiles–Atherton Model for Non-Oriented Electrical Steels: An Engineering Approach

    Get PDF
    High operating temperatures modify the magnetic behavior of ferromagnetic cores which may affect the performance of electrical machines. Therefore, a temperature-dependent material model is necessary to model the electrical machine behavior more accurately during the design process. Physics-inspired hysteresis models, such as the Jiles–Atherton (JA) model, seem to be promising candidates to incorporate temperature effects and can be embedded in finite element simulations. In this paper, we have identified the JA model parameters from measurements for a temperature range experienced by non oriented electrical steels in electrical machines during their operation. Based on the analysis, a parameter reduction has been performed. The proposed approach simplifies the identification procedures by reducing the number of model parameters and does not require any additional material information, such as the Curie temperature. The resulting temperature-dependent JA model is validated against measurements, and the results are in good agreement

    Temperature-dependent modelling of magnetic ageing of FeSi electrical steels

    Get PDF
    This paper deals with the temperature-dependent modelling of iron losses in the context of magnetic ageing of electricals steel used in high power electrical machines. First, two electrical steel sheet grades were heat treated at three temperatures in order to study the ageing effect evolution as a function of temperature. Results show a significant increase in iron losses for both steel grades. Then, considering the link between the macroscopic magnetic properties evolution (effect) and the microscopic precipitation (cause), the Johnson – Mehl – Avrami – Kolmogorov (JMAK) law describing the kinetics of precipitation was applied to model the time evolution of magnetic ageing. By coupling this model with the Arrhenius’ law, a model is developed to be able to predict the ageing for several temperature levels

    Characterization of the local incremental permeability of a ferromagnetic plate based on a four needles technique

    Get PDF
    The performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome thi

    Characterization of the local Electrical Properties of Electrical Machine Parts with non-Trivial Geometry

    Get PDF
    In electrical machines, knowing the electrical conductivity is of importance for the eddy current calculation, especially when massive iron parts are involved. Generally the conductivity is measured on samples of raw materials with simple geometries. Indeed, a simple geometry is suitable for applying an analytical approach to deduce the electrical conductivity from the measured electrical quantities. Nevertheless, when a non destructive measurement is required, the measurement of the electrical conductivity can become rather difficult on parts with complex geometry. To that end, with the help of the Finite Element Modeling approach (FEM), a strategy is developed to characterize the local electrical properties of parts with a non-trivial geometry

    Development and validation of an electrical and magnetic characterization device for massive parallelepiped specimens

    Get PDF
    Claw pole (CP) machine performances are strongly related to the electromagnetic properties of ferromagnetic materials. These properties are impacted by the manufacturing processes, in a heterogeneous way, as well as by the thermal behavior of the machine and mechanical constraints. Due to the complexity of CP geometry, extracted samples cannot respect the dimensions prescribed in international standards of electric and magnetic measurements. This paper proposes a specific methodology to characterize the electrical conductivity and the magnetic behavior of massive parallelepiped specimens extracted from different locations of a CP rotor

    Investigation of a Specific Magnetic Characterization dedicated to Manufactured Massive Cores

    Get PDF
    Projet PSPC LowCO2Motion porté par VALEO. Financement BPI France.Magnetic parts are usually composed of a stack of electrical steel laminations to reduce the eddy current losses. However, for cost reasons or for specific applications the magnetic core can be made from massive steel and thus manufactured with adapted processes such as forging. This kind of process may imply anisotropy and severe inhomogeneity of the material properties. Therefore, for accurate design or study of the electromagnetic part, it is necessary to account for the real properties of the material. In that context, most of the standard characterization procedures are not adapted to represent the magnetic flux behavior through a bulk material and applicable for material anisotropy at the same time. The proposed specific characterization procedure aims at considering these both aspects
    • …
    corecore