174 research outputs found

    Cue Integration in Categorical Tasks: Insights from Audio-Visual Speech Perception

    Get PDF
    Previous cue integration studies have examined continuous perceptual dimensions (e.g., size) and have shown that human cue integration is well described by a normative model in which cues are weighted in proportion to their sensory reliability, as estimated from single-cue performance. However, this normative model may not be applicable to categorical perceptual dimensions (e.g., phonemes). In tasks defined over categorical perceptual dimensions, optimal cue weights should depend not only on the sensory variance affecting the perception of each cue but also on the environmental variance inherent in each task-relevant category. Here, we present a computational and experimental investigation of cue integration in a categorical audio-visual (articulatory) speech perception task. Our results show that human performance during audio-visual phonemic labeling is qualitatively consistent with the behavior of a Bayes-optimal observer. Specifically, we show that the participants in our task are sensitive, on a trial-by-trial basis, to the sensory uncertainty associated with the auditory and visual cues, during phonemic categorization. In addition, we show that while sensory uncertainty is a significant factor in determining cue weights, it is not the only one and participants' performance is consistent with an optimal model in which environmental, within category variability also plays a role in determining cue weights. Furthermore, we show that in our task, the sensory variability affecting the visual modality during cue-combination is not well estimated from single-cue performance, but can be estimated from multi-cue performance. The findings and computational principles described here represent a principled first step towards characterizing the mechanisms underlying human cue integration in categorical tasks

    The Effect of Sensory Uncertainty Due to Amblyopia (Lazy Eye) on the Planning and Execution of Visually-Guided 3D Reaching Movements

    Get PDF
    Background: Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements. Methods: Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50–100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R 2) which correlates the spatial position of the limb during the movement to endpoint position. Results: Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R 2 values at 70 % of movement time along the elevation and depth axes during amblyopic eye viewing. Conclusion: Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implemen

    Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?

    Get PDF
    It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each step, not just on average. Here, we propose an analytical framework that reconciles issues of optimality, redundancy, and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride, while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that healthy humans are not precisely “optimal,” but instead consistently slightly over-correct small deviations in walking speed at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve robust control while minimizing effort and allowing potentially beneficial motor variability

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The neurobiological link between OCD and ADHD

    Get PDF
    • 

    corecore