221 research outputs found

    Lichen rehydration in heavy metal polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae

    Get PDF
    Lichens are adapted to desiccation/rehydration and accumulate heavy metals, which induce ROS especially from the photobiont photosynthetic pigments. Although their mechanisms of abiotic stress tolerance are still to be unravelled, they seem related to symbionts' reciprocal upregulation of antioxidant systems. With the aim to study the effect of Pb on oxidative status during rehydration, the kinetics of intracellular ROS, lipid peroxidation and chlorophyll autofluorescence of whole Ramalina farinacea thalli and its isolated microalgae (Trebouxia TR1 and T. TR9) was recorded. A genetic characterization of the microalgae present in the thalli used was also carried out in order to assess possible correlations among the relative abundance of each phycobiont, their individual physiological responses and that of the entire thallus. Unexpectedly, Pb decreased ROS and lipid peroxidation in thalli and its phycobionts, associated with a lower chlorophyll autofluorescence. Each phycobiont showed a particular pattern, but the oxidative response of the thallus paralleled the TR1's, agreeing with the genetic identification of this strain as the predominant phycobiont. We conclude that: (1) the lichen oxidative behaviour seems to be modulated by the predominant phycobiont and (2) Pb evokes in R. farinacea and its phycobionts strong mechanisms to neutralize its own oxidant effects along with those of rehydration

    Water isotopes in desiccating lichens

    Get PDF
    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition

    Beauty Is in the Eye of the Beholder: Proteins Can Recognize Binding Sites of Homologous Proteins in More than One Way

    Get PDF
    Understanding the mechanisms of protein–protein interaction is a fundamental problem with many practical applications. The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered 433 pairs of protein–protein complexes from the ABAC database (AB and AC binary protein complexes sharing a homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the protein–protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not support convergent evolution

    Determinants of Bacteriophage 933W Repressor DNA Binding Specificity

    Get PDF
    We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein

    Lichen response to ammonia deposition defines the footprint of a penguin rookery

    Get PDF
    Ammonia volatilized from penguin rookeries is a major nitrogen source in Antarctic coastal terrestrial ecosystems. However, the spatial extent of ammonia dispersion from rookeries and its impacts have not been quantified previously. We measured ammonia concentration in air and lichen ecophysiological response variables proximate to an Adèlie penguin rookery at Cape Hallett, northern Victoria Land. Ammonia emitted from the rookery was 15N-enriched (δ15N value +6.9) and concentrations in air ranged from 36–75 µg m−3 at the rookery centre to 0.05 µg m−3 at a distance of 15.3 km. δ15N values and rates of phosphomonoesterase (PME) activity in the lichens Usnea sphacelata and Umbilicaria decussata were strongly negatively related to distance from the rookery and PME activity was positively related to thallus N:P mass ratio. In contrast, the lichen Xanthomendoza borealis, which is largely restricted to within an area 0.5 km from the rookery perimeter, had high N, P and 15N concentrations but low PME activity suggesting that nutrient scavenging capacity is suppressed in highly eutrophicated sites. An ammonia dispersion model indicates that ammonia concentrations sufficient to significantly elevate PME activity and δ15N values (≥0.1 µg NH3 m−3) occurred over c. 40–300 km2 surrounding the rookery suggesting that penguin rookeries potentially can generate large spatial impact zones. In a general linear model NH3 concentration and lichen species identity were found to account for 72 % of variation in the putative proportion of lichen thallus N originating from penguin derived NH3. The results provide evidence of large scale impact of N transfer from a marine to an N-limited terrestrial ecosystem

    Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis

    Get PDF
    Background: The effects of pharmacological blood pressure lowering at normal or high-normal blood pressure ranges in people with or without pre-existing cardiovascular disease remains uncertain. We analysed individual participant data from randomised trials to investigate the effects of blood pressure lowering treatment on the risk of major cardiovascular events by baseline levels of systolic blood pressure. Methods: We did a meta-analysis of individual participant-level data from 48 randomised trials of pharmacological blood pressure lowering medications versus placebo or other classes of blood pressure-lowering medications, or between more versus less intensive treatment regimens, which had at least 1000 persons-years of follow-up in each group. Trials exclusively done with participants with heart failure or short-term interventions in participants with acute myocardial infarction or other acute settings were excluded. Data from 51 studies published between 1972 and 2013 were obtained by the Blood Pressure Lowering Treatment Trialists' Collaboration (Oxford University, Oxford, UK). We pooled the data to investigate the stratified effects of blood pressure-lowering treatment in participants with and without prevalent cardiovascular disease (ie, any reports of stroke, myocardial infarction, or ischaemic heart disease before randomisation), overall and across seven systolic blood pressure categories (ranging from <120 to ≥170 mm Hg). The primary outcome was a major cardiovascular event (defined as a composite of fatal and non-fatal stroke, fatal or non-fatal myocardial infarction or ischaemic heart disease, or heart failure causing death or requiring admission to hospital), analysed as per intention to treat. Findings: Data for 344 716 participants from 48 randomised clinical trials were available for this analysis. Pre-randomisation mean systolic/diastolic blood pressures were 146/84 mm Hg in participants with previous cardiovascular disease (n=157 728) and 157/89 mm Hg in participants without previous cardiovascular disease (n=186 988). There was substantial spread in participants' blood pressure at baseline, with 31 239 (19·8%) of participants with previous cardiovascular disease and 14 928 (8·0%) of individuals without previous cardiovascular disease having a systolic blood pressure of less than 130 mm Hg. The relative effects of blood pressure-lowering treatment were proportional to the intensity of systolic blood pressure reduction. After a median 4·15 years' follow-up (Q1–Q3 2·97–4·96), 42 324 participants (12·3%) had at least one major cardiovascular event. In participants without previous cardiovascular disease at baseline, the incidence rate for developing a major cardiovascular event per 1000 person-years was 31·9 (95% CI 31·3–32·5) in the comparator group and 25·9 (25·4–26·4) in the intervention group. In participants with previous cardiovascular disease at baseline, the corresponding rates were 39·7 (95% CI 39·0–40·5) and 36·0 (95% CI 35·3–36·7), in the comparator and intervention groups, respectively. Hazard ratios (HR) associated with a reduction of systolic blood pressure by 5 mm Hg for a major cardiovascular event were 0·91, 95% CI 0·89–0·94 for partipants without previous cardiovascular disease and 0·89, 0·86–0·92, for those with previous cardiovascular disease. In stratified analyses, there was no reliable evidence of heterogeneity of treatment effects on major cardiovascular events by baseline cardiovascular disease status or systolic blood pressure categories. Interpretation: In this large-scale analysis of randomised trials, a 5 mm Hg reduction of systolic blood pressure reduced the risk of major cardiovascular events by about 10%, irrespective of previous diagnoses of cardiovascular disease, and even at normal or high–normal blood pressure values. These findings suggest that a fixed degree of pharmacological blood pressure lowering is similarly effective for primary and secondary prevention of major cardiovascular disease, even at blood pressure levels currently not considered for treatment. Physicians communicating the indication for blood pressure lowering treatment to their patients should emphasise its importance on reducing cardiovascular risk rather than focusing on blood pressure reduction itself. Funding: British Heart Foundation, UK National Institute for Health Research, and Oxford Martin School

    Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities

    Get PDF
    Purpose of Review: The article discusses the two most significant modifiable risk factors for dementia, namely, physical inactivity and lack of stimulating cognitive activity, and their effects on developing cognitive reserve. Recent Findings: Both of these leisure-time activities were associated with significant reductions in the risk of dementia in longitudinal studies. In addition, physical activity, particularly aerobic exercise, is associated with less age-related gray and white matter loss and with less neurotoxic factors. On the other hand, cognitive training studies suggest that training for executive functions (e.g., working memory) improves prefrontal network efficiency, which provides support to brain functioning in the face of cognitive decline. Summary: While physical activity preserves neuronal structural integrity and brain volume (hardware), cognitive activity strengthens the functioning and plasticity of neural circuits (software), thus supporting cognitive reserve in different ways. Future research should examine whether lifestyle interventions incorporating these two domains can reduce incident dementia
    corecore