25,015 research outputs found

    Cosmic variance of the galaxy cluster weak lensing signal

    Full text link
    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate mass uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol and z=0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.Comment: 14 pages, 6 figures; submitted to MNRA

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure

    String vacua with flux from freely-acting obifolds

    Full text link
    A precise correspondence between freely-acting orbifolds (Scherk-Schwarz compactifications) and string vacua with NSNS flux turned on is established using T-duality. We focus our attention to a certain non-compact Z_2 heterotic freely-acting orbifold with N=2 supersymmetry (SUSY). The geometric properties of the T-dual background are studied. As expected, the space is non-Kahler with the most generic torsion compatible with SUSY. All equations of motion are satisfied, except the Bianchi identity for the NSNS field, that is satisfied only at leading order in derivatives, i.e. without the curvature term. We point out that this is due to unknown corrections to the standard heterotic T-duality rules.Comment: 13 pages, no figures; v2: references added and rearranged, version to appear in JHE

    More choice for men? Marriage patterns after World War II in Italy

    Get PDF
    We investigate how changes in the sex ratio induced by World War II affected the bargaining patterns of Italian men in the marriage market. Marriage data from the first wave of the Italian Household Longitudinal Survey (1997) are matched with newly digitized information on war casualties coming from the Italian National Bureau of Statistics. We find that men in post-war marriages were better off in terms of their spouse's education, this gain amounting to about half a year of schooling. By considering heterogeneity across provinces, we find that the effects were more pronounced in rural provinces, mountainous provinces, and provinces with a higher share of population employed in agriculture. This result suggests that in these provinces the war caused a more fundamental change in marriage patterns compared to urban, lower-lying, and less agricultural provinces where marriage markets might have been more flexible to begin with

    Compactifications of Heterotic Theory on Non-Kahler Complex Manifolds: I

    Get PDF
    We study new compactifications of the SO(32) heterotic string theory on compact complex non-Kahler manifolds. These manifolds have many interesting features like fewer moduli, torsional constraints, vanishing Euler character and vanishing first Chern class, which make the four-dimensional theory phenomenologically attractive. We take a particular compact example studied earlier and determine various geometrical properties of it. In particular we calculate the warp factor and study the sigma model description of strings propagating on these backgrounds. The anomaly cancellation condition and enhanced gauge symmetry are shown to arise naturally in this framework, if one considers the effect of singularities carefully. We then give a detailed mathematical analysis of these manifolds and construct a large class of them. The existence of a holomorphic (3,0) form is important for the construction. We clarify some of the topological properties of these manifolds and evaluate the Betti numbers. We also determine the superpotential and argue that the radial modulus of these manifolds can actually be stabilized.Comment: 75 pages, Harvmac, no figures; v2: Some new results added, typos corrected and references updated. Final version to appear in JHE

    Electromechanical Reliability Testing of Three-Axial Silicon Force Sensors

    Get PDF
    This paper reports on the systematic electromechanical characterization of a new three-axial force sensor used in dimensional metrology of micro components. The siliconbased sensor system consists of piezoresistive mechanicalstress transducers integrated in thin membrane hinges supporting a suspended flexible cross structure. The mechanical behavior of the fragile micromechanical structure isanalyzed for both static and dynamic load cases. This work demonstrates that the silicon microstructure withstands static forces of 1.16N applied orthogonally to the front-side of the structure. A statistical Weibull analysis of the measured data shows that these values are significantly reduced if the normal force is applied to the back of the sensor. Improvements of the sensor system design for future development cycles are derived from the measurement results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Synaptic partner prediction from point annotations in insect brains

    Full text link
    High-throughput electron microscopy allows recording of lar- ge stacks of neural tissue with sufficient resolution to extract the wiring diagram of the underlying neural network. Current efforts to automate this process focus mainly on the segmentation of neurons. However, in order to recover a wiring diagram, synaptic partners need to be identi- fied as well. This is especially challenging in insect brains like Drosophila melanogaster, where one presynaptic site is associated with multiple post- synaptic elements. Here we propose a 3D U-Net architecture to directly identify pairs of voxels that are pre- and postsynaptic to each other. To that end, we formulate the problem of synaptic partner identification as a classification problem on long-range edges between voxels to encode both the presence of a synaptic pair and its direction. This formulation allows us to directly learn from synaptic point annotations instead of more ex- pensive voxel-based synaptic cleft or vesicle annotations. We evaluate our method on the MICCAI 2016 CREMI challenge and improve over the current state of the art, producing 3% fewer errors than the next best method

    Nuclear quantum optics with x-ray laser pulses

    Full text link
    The direct interaction of nuclei with super-intense laser fields is studied. We show that present and upcoming high-frequency laser facilities, especially together with a moderate acceleration of the target nuclei, do allow for resonant laser-nucleus interaction. These direct interactions may be utilized for the optical measurement of nuclear properties such as the transition frequency and the dipole moment, thus opening the field of nuclear quantum optics. As ultimate goal, one may hope that direct laser-nucleus interactions could become a versatile tool to enhance preparation, control and detection in nuclear physics.Comment: 5 pages, 3 eps figures, revised versio

    Resonant Auger decay of the core-excited C∗^\astO molecule in intense X-ray laser fields

    Full text link
    The dynamics of the resonant Auger (RA) process of the core-excited C∗^\astO(1s−1π∗,vr=0^{-1}\pi^\ast,v_r=0) molecule in an intense X-ray laser field is studied theoretically. The theoretical approach includes the analogue of the conical intersections of the complex potential energy surfaces of the ground and `dressed' resonant states due to intense X-ray pulses, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the same final ionic states coherently, as well as the direct photoionization of the resonance state itself. The light-induced non-adiabatic effect of the analogue of the conical intersections of the resulting complex potential energy surfaces gives rise to strong coupling between the electronic, vibrational and rotational degrees of freedom of the diatomic CO molecule. The interplay of the direct photoionization of the ground state and of the decay of the resonance increases dramatically with the field intensity. The coherent population of a final ionic state via both the direct photoionization and the resonant Auger decay channels induces strong interference effects with distinct patterns in the RA electron spectra. The individual impact of these physical processes on the total electron yield and on the CO+(A2Π)^+(A^2\Pi) electron spectrum are demonstrated.Comment: 13 figs, 1 tabe
    • …
    corecore