1,447 research outputs found
SAT-Based Synthesis Methods for Safety Specs
Automatic synthesis of hardware components from declarative specifications is
an ambitious endeavor in computer aided design. Existing synthesis algorithms
are often implemented with Binary Decision Diagrams (BDDs), inheriting their
scalability limitations. Instead of BDDs, we propose several new methods to
synthesize finite-state systems from safety specifications using decision
procedures for the satisfiability of quantified and unquantified Boolean
formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on
computational learning, templates, or reduction to first-order logic. We also
present an efficient parallelization, and optimizations to utilize reachability
information and incremental solving. Finally, we compare all methods in an
extensive case study. Our new methods outperform BDDs and other existing work
on some classes of benchmarks, and our parallelization achieves a super-linear
speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1
The Potential for Neutrino Physics at Muon Colliders and Dedicated High Current Muon Storage Rings
Conceptual design studies are underway for muon colliders and other
high-current muon storage rings that have the potential to become the first
true ``neutrino factories''. Muon decays in long straight sections of the
storage rings would produce precisely characterized beams of electron and muon
type neutrinos of unprecedented intensity. This article reviews the prospects
for these facilities to greatly extend our capabilities for neutrino
experiments, largely emphasizing the physics of neutrino interactions.Comment: 107 pages, 16 figures, to be published in Physics Report
On Low-Energy Effective Actions in N = 2, 4 Superconformal Theories in Four Dimensions
We study some aspects of low-energy effective actions in 4-d superconformal
gauge theories on the Coulomb branch. We describe superconformal invariants
constructed in terms of N=2 abelian vector multiplet which play the role of
building blocks for the N=2,4 supersymmetric low-energy effective actions. We
compute the one-loop effective actions in constant N=2 field strength
background in N=4 SYM theory and in N=2 SU(2) SYM theory with four
hypermultiplets in fundamental representation. Using the classification of
superconformal invariants we then find the manifestly N=2 superconformal form
of these effective actions. While our explicit computations are done in the
one-loop approximation, our conclusions about the structure of the effective
actions in N=2 superconformal theories are general. We comment on some
applications to supergravity - gauge theory duality in the description of
D-brane interactions.Comment: 18 pages, latex, comments/reference adde
Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants
Supernova remnants have long been suggested as a class of potential
counterparts to unidentified gamma-ray sources. The mechanisms by which such
gamma-rays can arise may include emission from a pulsar associated with a
remnant, or a variety of processes associated with energetic particles
accelerated by the SNR shock. Imaging and spectral observations in the X-ray
band can be used to identify properties of the remnants that lead to gamma-ray
emission, including the presence of pulsar-driven nebulae, nonthermal X-ray
emission from the SNR shells, and the interaction of SNRs with dense
surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.
Expansion in perfect groups
Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an
integer q, denote by Ga_q the subgroup of Ga consisting of the elements that
project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q
with respect to the generating set S form a family of expanders when q ranges
over square-free integers with large prime divisors if and only if the
connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas
are explained in more details in the introduction, typos corrected, results
and proofs unchange
Inflation on an Open Racetrack
We present a variant of warped D-brane inflation by incorporating multiple
sets of holomorphically-embedded D7-branes involved in moduli stabilization
with extent into a warped throat. The resultant D3-brane motion depends on the
D7-brane configuration and the relative position of the D3-brane in these
backgrounds. The non-perturbative moduli stabilization superpotential takes the
racetrack form, but the additional D3-brane open string moduli dependence
provides more flexibilities in model building. For concreteness, we consider
D3-brane motion in the warped deformed conifold with the presence of multiple
D7-branes, and derive the scalar potential valid for the entire throat. By
explicit tuning of the microphysical parameters, we obtain inflationary
trajectories near an inflection point for various D7-brane configurations.
Moreover, the open racetrack potential admits approximate Minkowski vacua
before uplifting. We demonstrate with a concrete D-brane inflation model where
the Hubble scale during inflation can exceed the gravitino mass. Finally, the
multiple sets of D7-branes present in this open racetrack setup also provides a
mechanism to stabilize the D3-brane to metastable vacua in the intermediate
region of the warped throat.Comment: 29 pages, 15 figures, pre-print number and references adde
Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes
Neutrino telescopes with large detection volumes can demonstrate that the
current indications of neutrino oscillation are correct or if a better
description can be achieved with non-standard alternatives. Observations of
contained muons produced by atmospheric neutrinos can better constrain the
allowed region for oscillations or determine the relevant parameters of
non-standard models. We analyze the possibility of neutrino telescopes
measuring atmospheric neutrino oscillations. We suggest adjustments to improve
this potential. An addition of four densely-instrumented strings to the AMANDA
II detector makes observations feasible. Such a configuration is competitive
with current and proposed experiments.Comment: 36 pages, 21 figures, revte
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
A longitudinal investigation of repressive coping and ageing
This is an Accepted Manuscript of an article published by Taylor & Francis in Aging & Mental Health on October 2016, available online: http://www.tandfonline.com/doi/full/10.1080/13607863.2015.1060941.Two studies investigated the possibility that repressive coping is more prevalent in older adults and that this represents a developmental progression rather than a cohort effect. Study 1 examined repressive coping and mental health cross-sectionally in young and old adults. Study 2 examined whether there was a developmental progression of repressive coping prevalence rates in a longitudinal sample of older adults.Peer reviewedFinal Accepted Versio
- …
