1,096 research outputs found

    Effect of the source charge on charged-beam interferometry

    Full text link
    We investigate quantal perturbations of the interferometric correlations of charged bosons by the Coulomb field of an instantaneous, charged source. The source charge increases the apparent source size by weakening the correlation at non-zero relative momenta. The effect is strongest for pairs with a small total momentum and is stronger for kaons than for pions of the same momenta. The experimental data currently available are well described by this effect without invoking Pratt's exploding source model. A simple expression is proposed to account for the effect.Comment: 9 pages TEX, 3 Postscript figures available at http://www.krl.caltech.edu/preprints/MAP.htm

    Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries

    Get PDF
    PURPOSE: As global initiatives increase patient access to surgical treatments, there is a need to define optimal levels of perioperative care. Our aim was to describe the relationship between the provision and use of critical care resources and postoperative mortality. METHODS: Planned analysis of data collected during an international 7-day cohort study of adults undergoing elective in-patient surgery. We used risk-adjusted mixed-effects logistic regression models to evaluate the association between admission to critical care immediately after surgery and in-hospital mortality. We evaluated hospital-level associations between mortality and critical care admission immediately after surgery, critical care admission to treat life-threatening complications, and hospital provision of critical care beds. We evaluated the effect of national income using interaction tests. RESULTS: 44,814 patients from 474 hospitals in 27 countries were available for analysis. Death was more frequent amongst patients admitted directly to critical care after surgery (critical care: 103/4317 patients [2%], standard ward: 99/39,566 patients [0.3%]; adjusted OR 3.01 [2.10–5.21]; p < 0.001). This association may differ with national income (high income countries OR 2.50 vs. low and middle income countries OR 4.68; p = 0.07). At hospital level, there was no association between mortality and critical care admission directly after surgery (p = 0.26), critical care admission to treat complications (p = 0.33), or provision of critical care beds (p = 0.70). Findings of the hospital-level analyses were not affected by national income status. A sensitivity analysis including only high-risk patients yielded similar findings. CONCLUSIONS: We did not identify any survival benefit from critical care admission following surgery

    Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

    Full text link
    We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum Px\langle P_x\rangle and the normalized observable Px/P\langle P_x/P_\perp\rangle, where PP_\perp is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of Px/P\langle P_x/P_\perp\rangle.Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to sender's addres

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review

    A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens

    Get PDF
    Development of personalised cancer models to predict response to radiation would benefit patient care; particularly in malignancies where treatment resistance is prevalent. Herein, a robust, easy to use, tumour-on-a-chip platform which maintains precision cut head and neck cancer for the purpose of ex vivo irradiation is described. The device utilises sintered discs to separate the biopsy and medium, mimicking in vivo microvascular flow and diffusion, maintaining tissue viability for 68 h. Integrity of tissues is demonstrated by the low levels of lactate dehydrogenase release and retained histology, accompanied by assessment of cell viability by trypan blue exclusion and flow cytometry; fluid dynamic modelling validates culture conditions. An irradiation jig is described for reproducible delivery of clinically-relevant doses (5 × 2 Gy) to newly-presenting primary tumours (n = 12); the addition of concurrent cisplatin is also investigated (n = 8) with response analysed by immunohistochemistry. Fractionated irradiation reduced proliferation (BrdU, p = 0.0064), increased DNA damage (ƴH2AX, p = 0.0043) and caspase-dependent apoptosis (caspase-cleaved cytokeratin-18) compared to control; caspase-dependent apoptosis was further increased by concurrent cisplatin compared to control (p = 0.0063). This is a proof of principle study showing the response of cancer tissue to irradiation ex vivo in a bespoke system. The novel platform described has the potential to personalise treatment for patients in a cost-effective manner with applicability to any solid tumour

    Collective Flow from the Intranuclear Cascade Model

    Get PDF
    The phenomenon of collective flow in relativistic heavy ion collisions is studied using the hadronic cascade model ARC. Direct comparison is made to data gathered at the Bevalac, for Au+Au at p=12p=1-2 GeV/c. In contrast to the standard lore about the cascade model, collective flow is well described quantitatively without the need for explicit mean field terms to simulate the nuclear equation of state. Pion collective flow is in the opposite direction to nucleon flow as is that of anti-nucleons and other produced particles. Pion and nucleon flow are predicted at AGS energies also, where, in light of the higher baryon densities achieved, we speculate that equation of state effects may be observable.Comment: 9 pages, 2 figures include

    Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State

    Get PDF
    We measured the first azimuthal distributions of triple--differential cross sections of neutrons emitted in heavy-ion collisions, and compared their maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum-dependent interaction. The BUU calculations agree with the triple- and double-differential cross sections for positive rapidity neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum azimuthal anisotropy ratio for these free neutrons is insensitive to the size of the nuclear incompressibility modulus K characterizing the nuclear matter equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende

    Gene Discovery and Functional Genomics in the Pig

    Get PDF
    Advances in gene mapping and genomics in farm animals have been considerable over the past decade. Medium resolution linkage and physical maps have been reported, and specific chromosomal regions and genes associated with traits of biological and economic interest have been identified. We have reached an exciting stage in gene identification, mapping and quantitative trait locus discovery in pigs, as new molecular information is accumulating rapidly. Significant progress has been made by identifying candidate gene associations and low-resolution regions containing quantitative trail loci (QTL). However, we are still disadvantaged by the lack of tools available to efficiently use much of this new information. For example, current pig maps are neither of high enough resolution nor sufficiently informative at the comparative level for positional candidate gene cloning within QTL regions. As well, studying biological mechanisms underlying economically important traits such as reproduction is limited by the lack of molecular resources. This is especially important, as reproduction is very difficult to genetically improve by classical breeding methods due to the relatively low heritability and high expense in data collection. Thus, an improved understanding of porcine reproductive biology is of crucial economic importance, yet reproductive processes are poorly characterized at the molecular level. Recently, new methodologies have been brought to bear on a better understanding of pig molecular biology for accelerating genetic improvement in pigs. Several groups are developing molecular information in the pig, and the total Genbank sequence entries for porcine expressed genes have recently topped 100,000. Our Midwest EST Consortium has produced cDNA libraries containing the majority of genes expressed in major female reproductive tissues, and we have deposited nearly 15,000 gene sequences into public databases. These sequences represent over 8,900 different genes, based on sequence comparison among these data. Furthermore, we have developed computer software to automatically extract sequence similarity of these pig genes with their human counterparts, as well as the mapping information of these human homologues. Within our data set, we have identified nearly 1,500 pig genes with strong similarity to mapped human genes, and we are in the process of mapping 700 of these genes to improve the human-pig comparative map. This work and the complementary work of others can now be used to more rapidly understand and identify the genes controlling reproduction, so that genetic improvement of reproduction phenotypes can accelerate

    Very Long Baseline Neutrino Oscillation Experiment for Precise Measurements of Mixing Parameters and CP Violating Effects

    Get PDF
    We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to determine CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP phase δCP\delta_{CP} and the currently unknown mixing parameter θ13\theta_{13}, if sin22θ130.01\sin ^2 2 \theta_{13} \geq 0.01, a value 15\sim 15 times lower than the present experimental upper limit. In addition to θ13\theta_{13} and δCP\delta_{CP}, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including Δm322\Delta m^2_{32}, sin22θ23\sin^2 2\theta_{23}, Δm212×sin2θ12\Delta m^2_{21}\times \sin 2 \theta_{12}, and the mass ordering of neutrinos through the observation of the matter effect in the νμνe\nu_\mu \to \nu_e appearance channel.Comment: 12 pages, 10 figure
    corecore