37 research outputs found
Photonic Structures Optimization Using Highly Data-Efficient Deep Learning: Application To Nanofin And Annular Groove Phase Masks
Metasurfaces offer a flexible framework for the manipulation of light
properties in the realm of thin film optics. Specifically, the polarization of
light can be effectively controlled through the use of thin phase plates. This
study aims to introduce a surrogate optimization framework for these devices.
The framework is applied to develop two kinds of vortex phase masks (VPMs)
tailored for application in astronomical high-contrast imaging. Computational
intelligence techniques are exploited to optimize the geometric features of
these devices. The large design space and computational limitations necessitate
the use of surrogate models like partial least squares Kriging, radial basis
functions, or neural networks. However, we demonstrate the inadequacy of these
methods in modeling the performance of VPMs. To address the shortcomings of
these methods, a data-efficient evolutionary optimization setup using a deep
neural network as a highly accurate and efficient surrogate model is proposed.
The optimization process in this study employs a robust particle swarm
evolutionary optimization scheme, which operates on explicit geometric
parameters of the photonic device. Through this approach, optimal designs are
developed for two design candidates. In the most complex case, evolutionary
optimization enables optimization of the design that would otherwise be
impractical (requiring too much simulations). In both cases, the surrogate
model improves the reliability and efficiency of the procedure, effectively
reducing the required number of simulations by up to 75% compared to
conventional optimization techniques
The LQ-Optimal Control Problem for Invariant Linear Systems
This work is concerned with the study of the linear quadratic (LQ) optimal control
problem for linear systems with affine inequality constraints on the state and/or the input tra-
jectories, and in particular for input/state-invariant linear systems. The study of such systems
is motivated notably by the coexistence problem in a chemostat model where, for biologi-
cal reasons, it is meaningful to aim at forcing the state and the input trajectories to remain
in a cone. Necessary and sufficient optimality conditions are established for the input/state-
invariant LQ problem by using the maximum principle with state and input constraints and
by using the admissibility of the solution of the standard LQ problem. Similar and specific
results are obtained for the particular LQ problem for positive systems, which are character-
ized by the invariance of the nonnegative orthant of the state space. The methods developed
in this thesis are applied to the chemostat model via the study of locally positively input/state-
invariant nonlinear systems. The main results of this work are illustrated by some numerical
examples.Ce travail a pour objet l’étude du problème de commande optimale au sens linéaire
quadratique (LQ) pour des systèmes linéaires avec contraintes d’inégalité affines sur les
trajectoires d’état et/ou d’entrée, et en particulier pour des systèmes linéaires entrée/état-
invariants. L’étude de ces systèmes est motivée notamment par le problème de coexistence
dans un modèle de chémostat où, pour des raisons biologiques, il est important de chercher
à forcer les trajectoires d’état et d’entrée de rester dans un cône. Des conditions nécessaires
et suffisantes d’optimalité sont établies pour le problème LQ invariant entrée/état en utilisant
le principe du maximum avec contraintes sur l’état et l’entrée et à l’aide de l’admissibilité
de la solution du problème LQ standard. Des résultats similaires et spécifiques sont obtenus
pour le problème LQ appliqué aux systèmes positifs, qui sont caractérisés par l’invariance
de l’orthant non négatif de l’espace d’état. Les méthodes développées dans cette thèse
sont appliquées au modèle de chémostat via l’étude des systèmes non linéaires localement
entrée/état-invariants. Les principaux résultats de ce travail sont illustrés par des exemples
numériques.(DOCSC00) -- FUNDP, 201