250 research outputs found
Genetic evidence for different adiposity phenotypes and their opposing influence on ectopic fat and risk of cardiometabolic disease
To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants, one with ‘adverse’ metabolic effects (UFA) and the other with, paradoxically, ‘favourable’ metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, higher fat in subcutaneous and visceral adipose tissue, liver and pancreas for UFA; and a favourable metabolic profile, lower risk of disease, higher CRP, higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for risk-increasing effect of UFA and protective effect of FA on type 2 diabetes, heart disease, hypertension, stroke, non-alcoholic fatty liver disease and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat, and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting and treating of cardiometabolic diseases
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation
Background:Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases.Methods:We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases.Results:MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.Conclusions:Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy.Funding:Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute
Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation
Background:Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases.Methods:We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases.Results:MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.Conclusions:Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy.Funding:Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute
Genome-Wide and Abdominal MRI-Imaging Data Provides Evidence that a Genetically Determined Favourable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease and Hypertension
Recent genetic studies have identified alleles associated with opposite effects on
adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and
test the hypothesis that such “favourable adiposity” alleles are associated with higher
subcutaneous fat and lower ectopic fat. We combined magnetic resonance imaging
(MRI) data with genome-wide association studies (GWAS) of body fat % and
metabolic traits. We report 14 alleles, including 7 newly characterized alleles,
associated with higher adiposity, but a favourable metabolic profile. Consistent with
previous studies, individuals carrying more “favourable adiposity” alleles had higher
body fat % and higher BMI, but lower risk of type 2 diabetes, heart disease and
hypertension. These individuals also had higher subcutaneous fat, but lower liver fat
and lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated
with higher body fat % but lower liver fat and lower risk of type 2 diabetes included
those in PPARG, GRB14 and IRS1, whilst the allele in ANKRD55 was paradoxically
associated with higher visceral fat but lower risk of type 2 diabetes. Most identified
“favourable adiposity” alleles are associated with higher subcutaneous and lower liver
fat, a mechanism consistent with the beneficial effects of storing excess triglyceride in
metabolically low risk depots.Diabetes UK RD Lawrence fellowship, European Research Council, Wellcome Trust and Royal Society grant, European Regional Development Fund, Medical Research Council, German Federal Ministry of Education and Research, German Research Foundation, Innovative Medicines Initiative Joint Undertaking, European Union's
Seventh Framework Programme, Dutch Science Organisation, Scottish Government Health Directorates, Scottish Funding Council and Medical Research Council UK and the Wellcome Trust
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites
Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker
The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 × 10³⁴ cm⁻²s⁻¹. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 μm × 50 μm and rectangular 100 μm × 25 μm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 μm (2 μm) is obtained using the modules with 50 μm × 50 μm (100 μm × 25 μm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq = 5.3 × 10¹⁵ cm⁻², a resolution of 9.4 μm is achieved at a bias voltage of 800 V using a module with 50 μm × 50 μm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 × 10¹⁶ cm⁻². Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper
- …
