62 research outputs found

    Why Amphibians Are More Sensitive than Mammals to Xenobiotics

    Get PDF
    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device

    GO4genome: A Prokaryotic Phylogeny Based on Genome Organization

    Get PDF
    Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replacement of genes via horizontal gene transfer may give misleading results. GO4genome is a new paradigm, which is based on a detailed analysis of gene function and the location of the respective genes. For characterization of genes, the algorithm uses gene ontology enabling a comparison of function independent of evolutionary relationship. After the identification of locally optimal series of gene functions, their length distribution is utilized to compute a phylogenetic distance. The outcome is a classification of genomes based on metabolic capabilities and their organization. Thus, the impact of effects on genome organization that are not covered by methods of molecular phylogeny can be studied. Genomes of strains belonging to Escherichia coli, Shigella, Streptococcus, Methanosarcina, and Yersinia were analyzed. Differences from the findings of classical methods are discussed
    corecore