28 research outputs found

    The month of July: an early experience with pandemic influenza A (H1N1) in adults with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pandemic Influenza A (H1N1) 2009 is a novel viral infection that emerged in March 2009. This is the first report addressing the clinical course of patients with cystic fibrosis (CF) and H1N1 infection.</p> <p>Methods</p> <p>All patients with an influenza-like illness (ILI) attending our adult centre during July 2009 were identified. Baseline respiratory function, nutritional status, approach to management and short-term clinical course were recorded.</p> <p>Results</p> <p>Most patients experienced a mild course and were able to be managed with antiviral agents as an outpatient. Robust infection control policies were implemented to limit transmission of H1N1 infection within our CF centre. Patients with severe lung disease, poor baseline nutritional reserve and presenting with more than 48 hours of ILI experienced a more severe course. Prompt antiviral therapy within the first 48 hours of illness may have been important in improving outcomes.</p> <p>Conclusions</p> <p>This observational study demonstrates that most adults with CF with H1N1 infection had mild clinical courses and recovered rapidly.</p

    Investigation of the presence of human or bovine respiratory syncytial virus in the lungs of mink (Neovison vison) with hemorrhagic pneumonia due to Pseudomonas aeruginosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic pneumonia is a disease of farmed mink (<it>Neovison vison</it>) caused by <it>Pseudomonas aeruginosa</it>. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV) has been shown to augment infection with <it>P. aeruginosa</it> in mice and to promote adhesion of <it>P. aeruginosa</it> to human respiratory cells.</p> <p>Findings</p> <p>We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR) and for human RSV by a commercial real-time PCR. RSV was not found.</p> <p>Conclusions</p> <p>This study indicates that human and bovine RSV is not a major co-factor for development of hemorrhagic pneumonia in Danish mink.</p

    Respiratory hospitalizations and respiratory syncytial virus prophylaxis in special populations

    Get PDF
    Palivizumab utilization, compliance, and outcomes were examined in infants with preexisting medical diseases within the Canadian Registry Database (CARESS) to aid in developing guidelines for potential “at-risk” infants in the future. Infants who received ≥1 dose of palivizumab during the 2006–2010 respiratory syncytial virus (RSV) seasons at 29 sites were recruited and utilization, compliance, and outcomes related to respiratory infection/illness (RI) events were collected monthly. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for premature infants ≤35 completed weeks gestational age (GA) who met standard approval criteria (group 1) compared to those with medical disorders (group 2) using Cox proportional hazards regression models with adjustment for potential confounding factors. Of 7,339 registry infants, 4,880 were in group 1 and 952 in group 2, which included those with Down syndrome (20.3%), upper airway anomalies (18.7%), pulmonary diseases (13.3%), and cystic fibrosis (12.3%). Group 2 were older at enrolment (10.2 ± 9.2 vs. 3.5 ± 3.1 months, p < 0.0005), had higher GA (35.9 ± 6.0 vs. 31.0 ± 5.4 weeks, p < 0.0005), and were less compliant with treatment intervals (69.4% vs. 72.6%, p = 0.048). A greater proportion of group 2 infants were hospitalized for RI (9.0% vs. 4.2%, p < 0.0005) and RSV (2.4% vs. 1.3%, p = 0.003) (unadjusted). Being in group 2 was associated with an increased risk of RI (HR = 2.0, 95%CI 1.5–2.5, p < 0.0005), but not RSV hospitalization (HR = 1.6, 95%CI 0.9–2.8, p = 0.106). In infants receiving palivizumab, those with underlying medical disorders, though not currently approved for prophylaxis, are at higher risk for RI events compared with preterm infants. However, risk of RSV hospitalizations is similar

    Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

    Get PDF
    The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota

    Viruses exacerbating chronic pulmonary disease: the role of immune modulation

    Get PDF
    Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications

    Eph/ephrin-B-mediated cell-to-cell interactions govern MTS20+ thymic epithelial cell development

    No full text
    Thymus development is a complex process in which cell-to-cell interactions between thymocytes and thymic epithelial cells (TECs) are essential to allow a proper maturation of both thymic cell components. Although signals that control thymocyte development are well known, mechanisms governing TEC maturation are poorly understood, especially those that regulate the maturation of immature TEC populations during early fetal thymus development. In this study, we show that EphB2-deficient, EphB2LacZ and EphB3-deficient fetal thymuses present a lower number of cells and delayed maturation of DN cell subsets compared to WT values. Moreover, deficits in the production of chemokines, known to be involved in the lymphoid seeding into the thymus, contribute in decreased proportions of intrathymic T cell progenitors (PIRA/B+) in the mutant thymuses from early stages of development. These features correlate with increased proportions of MTS20+ cells but fewer MTS20− cells from E13.5 onward in the deficient thymuses, suggesting a delayed development of the first epithelial cells. In addition, in vitro the lack of thymocytes or the blockade of Eph/ephrin-B-mediated cell-to-cell nteractions between either thymocytes–TECs or TECs–TECs in E13.5 fetal thymic lobes coursed with increased proportions of MTS20+ TECs. This confirms, for the first time, that the presence of CD45+ cells, corresponding at these stages to DN1 and DN2 cells, and Eph/ephrin-B-mediated heterotypic or homotypic cell interactions between thymocytes and TECs, or between TECs and themselves, contribute to the early maturation of MTS20+ TECs
    corecore