6 research outputs found

    Phenotypic alterations in type II alveolar epithelial cells in CD4+ T cell mediated lung inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the contribution of alveolar type II epithelial cell (AEC II) activities in various aspects of respiratory immune regulation has become increasingly appreciated, our understanding of the contribution of AEC II transcriptosome in immunopathologic lung injury remains poorly understood. We have previously established a mouse model for chronic T cell-mediated pulmonary inflammation in which influenza hemagglutinin (HA) is expressed as a transgene in AEC II, in mice expressing a transgenic T cell receptor specific for a class II-restricted epitope of HA. Pulmonary inflammation in these mice occurs as a result of CD4<sup>+ </sup>T cell recognition of alveolar antigen. This model was utilized to assess the profile of inflammatory mediators expressed by alveolar epithelial target cells triggered by antigen-specific recognition in CD4<sup>+ </sup>T cell-mediated lung inflammation.</p> <p>Methods</p> <p>We established a method that allows the flow cytometric negative selection and isolation of primary AEC II of high viability and purity. Genome wide transcriptional profiling was performed on mRNA isolated from AEC II isolated from healthy mice and from mice with acute and chronic CD4<sup>+ </sup>T cell-mediated pulmonary inflammation.</p> <p>Results</p> <p>T cell-mediated inflammation was associated with expression of a broad array of cytokine and chemokine genes by AEC II cell, indicating a potential contribution of epithelial-derived chemoattractants to the inflammatory cell parenchymal infiltration. Morphologically, there was an increase in the size of activated epithelial cells, and on the molecular level, comparative transcriptome analyses of AEC II from inflamed versus normal lungs provide a detailed characterization of the specific inflammatory genes expressed in AEC II induced in the context of CD4<sup>+ </sup>T cell-mediated pneumonitis.</p> <p>Conclusion</p> <p>An important contribution of AEC II gene expression to the orchestration and regulation of interstitial pneumonitis is suggested by the panoply of inflammatory genes expressed by this cell population, and this may provide insight into the molecular pathogenesis of pulmonary inflammatory states. CD4<sup>+ </sup>T cell recognition of antigen presented by AEC II cells appears to be a potent trigger for activation of the alveolar cell inflammatory transcriptosome.</p

    Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung

    Get PDF
    BACKGROUND: Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs) in human BALT. METHODS: We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules. RESULTS: Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed alpha4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed alpha4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1. CONCLUSION: Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses

    Feinstrukturuntersuchung

    No full text

    The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms

    No full text
    corecore